Rotary Operator’s Manual

JUNE 2009
HAAS AUTOMATION, INC.
LIMITED WARRANTY CERTIFICATE
Covering Haas Automation, Inc. CNC Equipment
Effective January 1, 2009

Haas Automation Inc. ("Haas" or "Manufacturer") provides a limited warranty to all new mills, turning centers and rotary machines (collectively, "CNC Machines") and its components (except those listed below under Limits and Exclusions of Warranty) ("Components") that are manufactured by Haas and sold by Haas or its authorized distributors as set forth in this Certificate. The warranty set forth in this Certificate is a limited warranty and it is the only warranty by Manufacturer and is subject to the terms and conditions of this Certificate.

Limited Warranty Coverage
Each CNC Machine and its Components (collectively, "Haas Products") are warranted by Manufacturer against defects in material and workmanship. This warranty is provided only to the final purchaser and end-user of the CNC Machine (a "Customer"). The period of this limited warranty is one (1) year, except Toolroom Mills and Mini-Mills have a six (6) month warranty period. The warranty period commences on the date the CNC Machine is delivered to the Customer’s facility. Customer may purchase an extension of the warranty period from Haas or an authorized Haas distributor (a "Warranty Extension").

Repair or Replacement Only
Manufacturer’s sole liability, and customer’s exclusive remedy, with respect to any and all Haas products shall be limited to repairing or replacing, at the discretion of Manufacturer, the defective Haas product under this warranty.

Disclaimer of Warranty
THIS WARRANTY IS MANUFACTURER’S SOLE AND EXCLUSIVE WARRANTY AND IS IN LIEU OF ALL OTHER WARRANTIES OF WHATEVER KIND OR NATURE, EXPRESS OR IMPLIED, WRITTEN OR ORAL, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY, IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, OR OTHER WARRANTY OF QUALITY OR PERFORMANCE OR NONINFRINGEMENT. ALL SUCH OTHER WARRANTIES OF WHATEVER KIND ARE HEREBY DISCLAIMED BY MANUFACTURER AND WAIVED BY CUSTOMER.

Limits and Exclusions of Warranty
Components subject to wear during normal use and over time, including, but not limited to, paint, window finish and condition, light bulbs, seals, chip removal system, etc., are excluded from this warranty. Manufacturer’s specified maintenance procedures must be adhered to and recorded in order to maintain this warranty. This warranty is void if Manufacturer determines that (i) any Haas Product was subjected to mishandling, misuse, abuse, neglect, accident, improper installation, improper maintenance, improper storage, or improper operation or application, (ii) any Haas Product was improperly repaired or serviced by Customer, an unauthorized service technician, or other unauthorized person, (iii) Customer or any person makes or attempts to make any modification to any Haas Product without the prior written authorization of Manufacturer, and/or (iv) any Haas Product was used for any non-commercial use (such as personal or household use). This warranty does not cover damage or defect due to an external influence or matters beyond the reasonable control of Manufacturer, including, but not limited to, theft, vandalism, fire, weather condition (such as rain, flood, wind, lightning, or earthquake), or acts of war or terrorism.

Without limiting the generality of any of the exclusions or limitations described in this Certificate, this warranty does not include any warranty that any Haas Product will meet any person’s production specifications or other requirements or that operation of any Haas Product will be uninterrupted or error-free. Manufacturer assumes no responsibility with respect to the use of
any Haas Product by any person, and Manufacturer shall not incur any liability to any person for any failure in design, production, operation, performance or otherwise of any Haas Product other than repair or replacement of same as set forth in this warranty above.

Limitation of Liability and Damages
Manufacturer will not be liable to customer or any other person for any compensatory, incidental, consequential, punitive, special, or other damage or claim, whether in an action in contract, tort, or other legal or equitable theory, arising out of or related to any Haas product, other products or services provided by manufacturer or an authorized distributor, service technician or other authorized representative of manufacturer (collectively, “authorized representative”), or the failure of parts or products made by using any Haas product, even if manufacturer or any authorized representative has been advised of the possibility of such damages, which damage or claim includes, but is not limited to, loss of profits, lost data, lost products, loss of revenue, loss of use, cost of down time, business good will, any damage to equipment, premises or other property of any person, and any damage that may be caused by a malfunction of any Haas product. All such damages and claims are disclaimed by manufacturer and waived by customer. Manufacturer’s sole liability, and customer’s exclusive remedy, for damages and claims for any cause whatsoever shall be limited to repair or replacement, at the discretion of manufacturer, of the defective Haas product as provided in this warranty.

Customer has accepted the limitations and restrictions set forth in this Certificate, including, but not limited to, the restriction on its right to recover damages, as part of its bargain with Manufacturer or its Authorized Representative. Customer realizes and acknowledges that the price of the Haas Products would be higher if Manufacturer were required to be responsible for damages and claims beyond the scope of this warranty.

Entire Agreement
This Certificate supersedes any and all other agreements, promises, representations or warranties, either oral or in writing, between the parties or by Manufacturer with respect to subject matter of this Certificate, and contains all of the covenants and agreements between the parties or by Manufacturer with respect to such subject matter. Manufacturer hereby expressly rejects any other agreements, promises, representations or warranties, either oral or in writing, that are in addition to or inconsistent with any term or condition of this Certificate. No term or condition set forth in this Certificate may be modified or amended unless by a written agreement signed by both Manufacturer and Customer. Notwithstanding the foregoing, Manufacturer will honor a Warranty Extension only to the extent that it extends the applicable warranty period.

Transferability
This warranty is transferable from the original Customer to another party if the CNC Machine is sold via private sale before the end of the warranty period, provided that written notice thereof is provided to Manufacturer and this warranty is not void at the time of transfer. The transferee of this warranty will be subject to all terms and conditions of this Certificate.

Miscellaneous
This warranty shall be governed by the laws of the State of California without application of rules on conflicts of laws. Any and all disputes arising from this warranty shall be resolved in a court of competent jurisdiction located in Ventura County, Los Angeles County or Orange County, California. Any term or provision of this Certificate that is invalid or unenforceable in any situation in any jurisdiction shall not affect the validity or enforceability of the remaining terms and provisions hereof or the validity or enforceability of the offending term or provision in any other situation or in any other jurisdiction.
Warranty Registration
Should you have a problem with your machine, please consult your operator’s manual first. If this does not resolve the problem, call your authorized Haas distributor. As a final solution, call Haas directly at the number indicated below.

Haas Automation, Inc.
2800 Sturgis Road
Oxnard, California 93030-8933 USA
Phone: (805) 278-1800
FAX: (805) 278-8561

In order to record the end-user customer of this machine for updates and for product safety notices, we must have the machine registration returned immediately. Please fill out completely and mail to the above address to ATTENTION (HA5C, HRT310, TR110, etc.—whichever is applicable) REGISTRATIONS. Please include a copy of your invoice to validate your warranty date and to cover any additional options you may have purchased.

Company Name: __________________________ Contact Name: __________________________
Address: ________________________________

Dealer: ______________ Date Installed: _______/_____/_____
Model No. : __________________ Serial Number: __________________
Telephone: (_____) __________________ FAX: (_____) __________________

IMPORTANT NOTICE!!! PLEASE READ IMMEDIATELY!!!

This warranty is void if the unit is subject to misuse, neglect, accident, disassembly, improper installation or application. We are not liable for any additional or incidental damage to parts, fixtures or machines that may be caused by malfunctions. Haas Automation will provide free service at the factory, including parts, labor, and ground freight back to the customer, for any malfunction of its products. You must pay for shipping the unit to us. If you wish to have the unit shipped back to you other than by UPS ground you will be billed for all shipping charges.

Freight collect shipments will be refused
If you have a problem with your unit, a phone call to us or a rereading of the manual might solve the problem. Some problems might require you to return the unit for repair. If you need to return the unit, you must call us for a repair authorization before sending the unit. In order to speed return of the repaired unit please tell us precisely what the problem is and give us the name of a person whom we can contact who observed the problem. Describing the problem is essential in intermittent cases or where the unit fails to perform consistently but continues to operate. Returned units should be packed in the original shipping cartons. We are not responsible for damage done in transit. Send your shipment, freight pre-paid, to Haas Automation, 2800 Sturgis Rd, Oxnard CA 93030.
Customer Satisfaction Procedure

Dear Haas customer,

Your complete satisfaction and goodwill are of the utmost importance to both Haas Automation, Inc., and the Haas distributor where you purchased your equipment. Normally, any concerns you may have about the sales transaction or the operation of your equipment will be rapidly resolved by your distributor. However, if your concerns are not resolved to your complete satisfaction, and you have discussed your concerns with a member of the dealership’s management, the General Manager or the dealership’s owner directly, please do the following:

Contact Haas Automation’s Customer Service Center by calling 800-331-6746 and ask for the Customer Service Department. So that we may resolve your concerns as quickly as possible, please have the following information available when you call:

• Your name, company name, address and phone number
• The machine model and serial number
• The dealership name, and the name of your latest contact at the dealership
• The nature of your concern

If you wish to write Haas Automation, please use this address:

Haas Automation, Inc.
2800 Sturgis Road
Oxnard, CA 93030

Att: Customer Satisfaction Manager

e-mail: Service@HaasCNC.com

Once you contact the Haas Automation Customer Service Center, we will make every effort to work directly with you and your distributor to quickly resolve your concerns. At Haas Automation, we know that a good Customer-Distributor-Manufacturer relationship will help ensure continued success for all concerned.

Customer Feedback

If you have any concerns or questions in regards to the Haas Operator’s manual, please contact us via our E-mail, pubs@haascnc.com. We look forward to any suggestions you may have.

Certification

All Haas CNC machine tools carry the ETL Listed mark, certifying that they conform to the NFPA 79 Electrical Standard for Industrial Machinery and the Canadian equivalent, CAN/CSA C22.2 No. 73. The ETL Listed and cETL Listed marks are awarded to products that have successfully undergone testing by Intertek Testing Services (ITS), an alternative to Underwriters’ Laboratories.

The ISO 9001:2000 certification from TUV Management Service (an ISO registrar) serves as an impartial appraisal of Haas Automation’s quality management system. This achievement affirms Haas Automation’s conformance with the standards set forth by the International Organization for Standardization, and acknowledges the Haas commitment to meeting the needs and requirements of its customers in the global marketplace.
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
Contents

INTRODUCTION ... 1
UNPACKING AND SETUP .. 1
 GENERAL SETUP .. 2
 HIT210 INSTALLATION / OPERATION ... 5
 HRT/TRT 110 BRAKE BOOSTER INSTALLATION ... 6
 INTERFACING TO OTHER EQUIPMENT ... 7
 THE REMOTE INPUT ... 8
 REMOTE OPERATION WITH MANUAL EQUIPMENT ... 9
 REMOTE OPERATION WITH CNC EQUIPMENT ... 10
 THE RS-232 INTERFACE ... 10
 REMOTE OPERATION WITH A FANUC CNC CONTROL (HRT & HA5C) 13
 UPLOAD / DOWNLOAD .. 15
 HA2TS SETUP AND OPERATION (HA5C) ... 17
 USE OF COLLETS, CHUCKS, AND FACE PLATES .. 18
 AIR COLLET CLOSERS ... 19
 COLLET CLOSER REMOVAL (MODEL AC25 / AC100 / AC125) 22
 HAAS MANUAL DRAW TUBE (HMDT) ... 22
 COLLET STICKING ... 22
 HA5C TOOLING LOCATIONS ... 23
 DUAL AXES COORDINATE SYSTEM .. 23

OPERATION .. 24
 THE FRONT PANEL DISPLAY ... 24
 TURNING THE SERVO ON ... 27
 FINDING THE ZERO POSITION ... 27
 OFFSETTING THE ZERO POSITION ... 28
 JOGGING .. 28
 ERROR CODES .. 28
 SERVO OFF CODES .. 29
 EMERGENCY STOP .. 30

PROGRAMMING THE CONTROLLER ... 30
 INTRODUCTION .. 30
 ENTERING A STEP .. 31
 PUTTING A PROGRAM INTO MEMORY .. 32
G Codes .. 33
Continuous Motion .. 33
Absolute / Incremental Motion .. 34
Feed Rates ... 34
Loop Counts .. 34
Subroutines (G96) .. 34
Delay Code (G97) ... 34
Circle Division ... 35
Auto Continue Control ... 35
Inserting a Line ... 35
Deleting a Line .. 35
Default Values .. 35
Selecting a Stored Program ... 36
Clearing a Program .. 36
Operating Hints .. 36
Simultaneous Rotation and Milling .. 36
Spiral Milling (HRT & HA5C) ... 36
Possible Timing Issues .. 37
Programming Examples .. 38
Single Axis Programming ... 38
Dual-Axis Programming ... 40
Programmable Parameters ... 44
Gear Compensation .. 45
Dual-Axis Travel Limits ... 46
Parameter List .. 46
Troubleshooting .. 53
Troubleshooting a Working Interface on a CNC 53
B on A Axis Offset (Tilting Rotary Products) 54
Troubleshooting Guide ... 56
Routine Maintenance .. 57
Inspection of the Table (HRT & TRT) ... 57
Adjustments .. 57
Coolants ... 58
Lubrication ... 58
Clean Up ... 59
HA5C Collet Key Replacement .. 59
HRT Assembly Drawings .. 60
HRT160/210/310SP Assembly Drawings and Parts Lists 69
HRT160/210/310SP Assembly Drawings and Parts Lists 70
HA5C Assembly Drawings ... 72
TR110 Rotary Table w/HRT110 Rotary Table 77
TRT Assembly Drawings .. 79

This manual and all of its contents are copyright protected 2009, and may not be reproduced without written permission from Haas Automation, Inc.

Original instructions
Introduction

The Haas rotary tables and indexers are fully automatic, programmable, positioning devices. The units are made up of two parts: The mechanical head, that holds the workpiece, and the control.

The unit was specifically designed for rapid positioning of parts in secondary operations such as milling, drilling, and tapping. The device is especially suited to automatic machines such as NC mills and automatic production machines. The control can be remotely activated by your equipment and does not require human assistance, resulting in fully automatic operation. Furthermore, one unit can be used on several different machines, thereby eliminating the need for multiple units.

Positioning of the workpiece is accomplished by programming the angular movements, these positions are stored in the control. Up to seven programs can be stored, and the battery powered memory will retain the program when the power is turned off.

The control is programmed in steps (angle) sizes from .001 to 999.999°. There can be 99 steps, for each program, and each step can be repeated (looped) 999 times. The optional RS-232 interface can be used to upload, download, enter data, read position, start, and stop motor operation.

This system of the rotary control and unit is defined as a “semi-fourth axis”. This means that the table cannot do simultaneous interpolation with other axes. Linear moves or spirals can be generated by having an axis of the mill move at the same time the rotary table moves; the “Programming” section describes this in detail.

HRTs, TRTs, and TRs are equipped with a pneumatic brake; compressed air (approx. 100 psi) is needed to activate the brake.

Unpacking and Setup

Optional Servo Control Bracket

Designed to work specifically with the Haas line of CNC mills. This bracket keeps the Servo Control in easy reach of the operator, allowing for easy programming between the Haas mill and Rotary table. Contact your Haas dealer to order. (Haas part number: SCPB)
TR-Series Shipping Bracket Removal
Remove the shipping bracket before using

TR160(160-2)/TR210: The shipping bracket is located on the right rear of the unit.

Replace the (2) 10-32 and (2) 1/4-20 screws, do not replace the 1/2-13 bolt. The TR160 does not have a 1/2-13 bolt.

TR310: Remove the (4) 1/2-13 bolts and washers. Remove the (2) T-nuts from the rotary platter.

Keep all hardware and shipping brackets.

Haas Tailstocks
Tailstocks with live centers are recommended.

!Warning! Tailstocks cannot be used with the HRT320FB table.

Clean bottom surface of tailstock casting before mounting to mill table. If there are any noticeable burrs or nicks on the mounting surface, clean them with a deburring stone.

Tailstocks must be properly aligned to the rotary table before using. See the Haas tailstock manual (96-5000) for more information and the operating pressure of pneumatic tailstocks.

GENERAL SETUP

There are a number of ways the rotary products can be installed. Use the following pictures as a guide.

Route the cable from the table such that it avoids tool changers and table edges. Cable slack must be provided for your machine’s movements. If the cable is cut, the motor will fail prematurely.

Rotary Table Mounting

NOTE: The HRT 160, 210, 450, and 600 Rotary Tables can be secured as shown:

- Remove Top Cover to Access Toe-Clamp Pockets
- 1/2-13 UNC T-Nuts, Studs, Flange nuts and Washers
- 1/4-20 UNC SHCS (4)
- Toe-Clamp Assembly (2)
- Bottom of Casting
- Clamping Tool Assembly (2)
- 1/2-13 UNC T-Nuts, Studs, Flange nuts, and Washers
- 1/2-13 UNC T-Nuts, Studs, Flange nuts, and Washers
- Toe Clamp Assembly (2)
Standard stud mounting, front and rear For extra rigidity, use additional Toe-Clamps (*not supplied)

The HRT 310 can be secured as shown (Dimensions are in inches)

![Diagram of fixture plate and bolt pattern]

HA5C Mounting

1. Secure the unit to the mill table.
2. Connect the cables from the rotary unit to the control, with the power off. *Never connect or disconnect the cables with the power on.* It can be connected as either a full-fourth or semi-fourth axis. See the following figure. For full-fourth axis, the indexer is connected directly to the Haas mill control at the connector labeled “A axis”. The mill must have the 4th (and 5th) axis option(s) to run full-4th (and full-5th) axis.

Semi-Fourth Axis Operation

To Mill RS232 Port or Interface Cable Port

![Diagram of semi-fourth axis setup]

Full-Fourth Axis Operation

To Mill A-Axis Port

![Diagram of full-fourth axis setup]
3. Route the cables over the back of the mill sheetmetal and install the cable clamp. The bottom plate of the clamp assembly must be removed and discarded before installing the clamp to the mill. Assemble the clamp to the mill as shown.

4. If adding a full forth, or full fifth rotary product to a Haas mill, the settings must be set for the specific unit. Refer to the instructions in the mill manual (mill settings 30 and 78) or call the Haas service department.

5. **Semi-Fourth Axis**: Secure the servo control in the servo pendant bracket (Haas part number SCPB). Do not cover any surface of the control, as it will overheat. Do not place the unit on top of other hot electronic controls.

6. **Semi-Fourth Axis**: Connect the AC line cord to a power supply. The cord is a three-wire ground type, and the ground must be connected. The power service must supply a minimum of 15 amps continuously. Conduit wire must be 12 gauge or larger and fused for at least 20 amps. If an extension cord is used, use a three-wire ground type, the ground line must be connected. Avoid outlets that have large electric motors connected to them. Use only heavy duty 12 gauge extension cords capable of 20 amp load. Do not exceed a length of 30 feet.

7. **Semi-Fourth Axis**: Connect the remote interface lines. See "Interfacing to Other Equipment" section.

8. **HRT, TR and TRT** - Connect the table to an air supply (120 psi max). The line pressure to the brake is not regulated. The air pressure must remain between 80 and 120 psi.

NOTE: Haas recommends the use of an in-line air filter/regulator for all tables. The air filter will keep contaminants from entering the air solenoid valve.
9. Check the oil level. If it is low, add oil. Use MOBIL SHC-634 synthetic gear oil (Viscosity Grade ISO 220). For the HRT210SHS use Mobil SHC-626 synthetic gear oil (Viscosity Grade ISO 68).

10. Turn on the mill (and servo control, if applicable) and home the table/indexer by pressing the Zero Return button. All Haas indexers home in the clockwise direction as viewed from the platter/spindle. If the table(s) home counter-clockwise, press E-stop and call your dealer.

HIT210 Installation / Operation

Installation of the HIT210 includes connecting power, air and one of two control cables. An optional third control cable (Remote Quill Switch) is also available.

Air Connection
Connect the table to an air supply (120 psi max). The air pressure must remain between 80 and 120 psi.

NOTE: Haas recommends the use of an in-line air filter/regulator for all tables. The air filter will keep contaminates from entering the air solenoid valve.

Power and Control Connection
The power portion of the power and control cable (36-4110) is connected to a standard 115 vAC @ 15A power outlet. The cord is a three-wire ground type, and the ground must be connected.

![HIT Power & Control Cable Diagram]

HIT210 Manual Operation
HIT210 manual operation is performed via a momentary switch cable (32-5104) connected to the end of the control portion of the power and control cable. Each time the button is pressed, the table rotates 45 degrees.
HIT210 Automatic Operation

MFIN Cable: The HIT210 may be controlled automatically by connecting MFIN Cable 100 (33-0141) to the end of the control portion of the power and control cable. The other end of the cable is attached to P10, P24 and MFIN connectors M21 and M24 on the IOPCB. In addition to 45 degree movement, automatic operation provides a 'Return to Home' command.

Automatic operation of the HIT210 is accomplished by means of optional user M function codes. The M-codes used for the HIT210 are M21 and M24. M21 rotates the platter 45 degrees. M24 returns the platter to home. The M codes are entered via the control and may consist of an M24 to start the platter at the home position. An M21 will rotate the platter 45 degrees (where an operation is to be performed). Two more M21s will rotate the platter 90 degrees (where another operation is to be performed). Good machining practices suggest a final M24 to return the platter to its home position.

Remote Quill Switch (RQSI): The optional Remote Quill Switch (36-4108) is used on a manually operated “Knee Mill” to index a part automatically rather than manually. The remote quill switch is placed at the top of the quill’s travel, causing the switch to engage when the drilling has been completed and the quill retracted to the top of it’s travel. This will signal the indexer to index to the next step in the program.

Once the switch is connected to the controller, verify the operation of the switch via a simple test program. With the control turned on and “homed” depress the quill switch to verify the indexer moves to the next step.

HRT/TRT 110 Brake Booster Installation

The brake booster is shipped empty. It must be filled with oil and the air purged from the system before operating.

The brake booster(s) are installed on the back of the rear cabinet door as shown. Mount the brake booster(s) by opening the rear cabinet door, clipping them to the top of the door, then shutting the rear cabinet door.

Set-up

Fill the reservoir by removing the plug (square bolt) and adding either, Mobil DTE 25, Shell Tellus 23, or Chevron EP 22. The oil should be added until it is 1/4” to 1/2” below the reservoir cap.
Turn the pressure regulator down (turn adjusting knob counter clock-wise) so no air pressure enters the system. Install an air supply to the input side of the regulator. Loosen hex-head bolt on top of HRT/TRT unit. Slowly turn pressure up on the regulator until the gauge shows 5 psi. Hydraulic fluid flows through the system and exits through the loose bolt on the HRT/TRT body. Tighten the hex-head bolt once a steady flow of oil flows by the bolt.

Refill the oil reservoir, it should be 1/4” to 1/2” below the reservoir cap.

Pressure Adjustment

Set the air pressure for the HRT/TRT brake booster between 35 and 40psi. Turning the knob clockwise increases the pressure, turning it counter-clock wise decreases the pressure. It may be necessary to pull up on the knob, before adjusting, to unlock it. Press the adjusting knob down once the pressure is set to lock the adjusting knob. **Warning:** Setting a pressure above the recommendation may damage the brake.

Oil Level

Check the brake booster oil level before using. The oil level should be 1/4” to 1/2” below the reservoir cap. If necessary, add oil by removing the plug (square bolt), at the top of the reservoir and filling with Mobil DTE25, Shell Tellus 23, or Chevron EP22 oil. Only use these types of oil.

INTERFACING TO OTHER EQUIPMENT

The Haas control has two signals, input and output. The mill tells the rotary control to index (an input), it indexes, and sends a signal back, to the mill, that the index (an output) has been completed. This interface requires four wires; two for each signal, and are from the rotary control remote input and from the mill.

The control can be installed to communicate with your mill two different ways: RS-232 Interface or CNC Interface Cable. These connections are detailed in the following sections.

The Relay In the Haas Control

The relay inside the control has a maximum rating of 2 amps (1 amp for HA5C) at 30 volts DC. It is programmed as either a normally closed (closed during cycle) or a normally open relay (after cycle). See “Parameters” section. It is intended to drive other logic or small relays, it will not drive other motors, magnetic starters, or loads exceeding 100 watts. If the feedback relay is used to drive another DC relay (or any inductive load), install a snubber diode across the relay’s coil in the opposite direction of coil current flow. Failure to use this diode or other arc suppression circuitry on inductive loads, damages contacts of the relay.

Use an ohmmeter to measure resistance across pins 1 and 2, to test the relay. The reading should be infinite, with the control off. If a lower resistance is measured, contact points have failed and relay must be replaced.
The Remote Input

The CNC Interface Cable provides communication between the mill and Haas rotary control. Since most CNC machine tools are equipped with spare M-codes, semi-fourth axis machining is achieved by connecting one end of the CNC Interface Cable to any of these spare relays (switches), and the other to the Haas rotary control. Commands for the rotary unit are stored in rotary control memory, and each pulse of the mill relay, triggers the rotary control to move the unit to its next programmed position. Once the move is complete, the rotary control signals that it has finished and is ready for the next pulse.

A remote socket is provided on the control unit back panel. Remote input consists of a cycle start signal and a cycle finish signal. To connect to the remote, a connector (contact your dealer) can be used to trigger the controller from any one of several sources. The cable connector used is a male four-pin DIN connector. The Haas Automation part number is 74-1510 (Amphenol part number is 703-91-T-3300-1). The Haas Automation part number is 74-1509 for the panel receptacle in the control box (Amphenol part number 703-91-T-3303-9).

Cycle Start

When pins 3 and 4 are connected to each other for a minimum of 0.1 seconds, the control will move the unit one cycle or step. To move again, pins 3 and 4 must open for a minimum of 0.1 seconds. Under no circumstances apply power to pins 3 and 4; a relay closure is the safest way to interface the control.

When cycle start is used, pin 3 supplies a positive 12 volts at 20 milliamps and pin 4 is connected to the diode of an opto-isolator that grounds to chassis. Connecting pin 3 to pin 4 causes a current to flow through the diode of the opto-isolator, triggering the control.

If the control is used around high frequency equipment such as electric welders or induction heaters, shielded wire must be used to prevent false triggering by radiated EMI (electromagnetic interference). The shield should be attached to earth ground. A typical CNC interface follows:
Cycle Finish

If your application is in an automatic machine (CNC mill) the feedback lines (pins 1 and 2) are used. Pins 1 and 2 are connected to the contacts of a relay inside the control and have no polarity or power on them. They are used to synchronize the automatic equipment with the controller.

The feedback cables tell the mill that the rotary unit has finished. The relay can be used to "Feed Hold" NC machine movements or can be used to cancel an M function. If the machine is not equipped with this option, an alternative may be to dwell (pause) longer than it takes to move the rotary unit. The relay will trigger for all cycle start closures except G97.

REMOTE OPERATION WITH MANUAL EQUIPMENT

The remote connection is used to index the unit other than by the Start switch. For example, using the optional Haas remote quill switch (Haas P/N RQS), every time the quill handle is retracted it touches a clamped micro switch, automatically indexing the unit. Or use the switch to index the unit automatically during milling. For example, every time the table comes back to a specific position, a bolt on the table can press the switch, indexing the unit.

In order to index the unit, pins 3 and 4 need to be connected (Do not apply power to these wires). A connection, at pins 1 and 2 are not needed for the control to operate. However pins 1 and 2 could be used to signal another option, such as an automatic drilling head.

A color-coded cable is available to help with the installation (M-Function control), the cable colors and pin designations are:

1 = red, 2 = green, 3 = black, 4 = white
HA5C Remote Input Example: A common application for the HA5C is dedicated drilling operations. The cycle start wires are connected to a switch that closes when the drill head retracts and the “Finish” wires are connected to the “Start” wires of the drill head. When the operator pushes Cycle Start, the HA5C indexes to position, and triggers the drill head to drill the hole. The switch mounted to the top of the drill head will index the HA5C when the drill retracts. This results in an endless loop of indexing and drilling. To stop the cycle, enter a G97 as the last step of the control. The G97 is a No Op code that tells the control not to send the feedback so the cycle can be stopped.

REMOTE OPERATION WITH CNC EQUIPMENT

NOTE: All of the Haas controls come standard with 1 CNC interface cable. Additional CNC interface cables can be ordered (Haas P/N CNC).

CNC mills have Miscellaneous functions called “M-functions”. These control external switches (relays) that turn other mill functions on or off (i.e., spindle, coolant, etc.). The Haas remote cycle start cable is hooked into the normally open contacts of a spare M-function relay. Our remote feedback cables are then connected to the M-function-finished cable (MFIN), an input to the mill control, that tells the mill to continue to the next block of information. The interface cable is Haas P/N: CNC

THE RS-232 INTERFACE

There are two connectors used for the RS-232 interface; one male and one female DB-25 connectors. Multiple rotary controls are connected by daisy-chaining the boxes. The cable from the computer connects to the female connector. Another cable can connect the first control to the second by connecting the male connector of the first box to the female connector of the second; this can be repeated for up to nine controls. The RS-232 connector on the control used to up and down load programs.

• HRT & HA5C - The RS-232 connector on the back of most PCs is a male DB-9, so only one type of cable is required for connection to the control, or between controls. This cable must be a DB-25 male on one end and a DB-9 female on the other. Pins 1, 2, 3, 4, 5, 6, 7, 8, and 9 must be wired one-to-one. It cannot be a Null Modem cable, which inverts pins 2 and 3. To check cable type, use a cable tester to check that communication lines are correct. The control is DCE (Data Communication Equipment), which means that it transmits on the RXD line (pin 3) and receives on the TXD line (pin 2). The RS-232 connector on most PCs is wired for DTE (Data Terminal Equipment), so no special jumpers should be required. The down line (RS-232 OUT) DB-25 connector is used when multiple controls are used. The first control’s down (RS-232 OUT) line connector goes to the second controller’s up (RS-232 IN) line connector, etc.
• TRT - On most PCs today, the RS-232 connector is a DB-9. To connect the two, a null modem cable with a female DB-9 on one end and a male DB-25 on the other end is required. Both the PC and the Dual axis controller are DTE’s, so a null modem cable is required. Use the following connections to build or test a cable:

<table>
<thead>
<tr>
<th>PC female DB-9</th>
<th>Haas dual control Male DB-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 2, Receive Data</td>
<td>connects to</td>
</tr>
<tr>
<td>Pin 3, Transmit Data</td>
<td>connects to</td>
</tr>
<tr>
<td>Pin 5, Logic Ground</td>
<td>connects to</td>
</tr>
<tr>
<td>Pin 4, DTR</td>
<td>connects to</td>
</tr>
<tr>
<td>Pin 6, DSR</td>
<td>connects to</td>
</tr>
<tr>
<td>Pin 7, RQS</td>
<td>connects to</td>
</tr>
<tr>
<td>Pin 8, CTS</td>
<td>connects to</td>
</tr>
<tr>
<td></td>
<td>Pin 2, Transmit Data*</td>
</tr>
<tr>
<td></td>
<td>Pin 3, Receive Data*</td>
</tr>
<tr>
<td></td>
<td>Pin 7, Logic Ground*</td>
</tr>
<tr>
<td></td>
<td>Pin 6, DSR</td>
</tr>
<tr>
<td></td>
<td>Pin 20, DTR</td>
</tr>
<tr>
<td></td>
<td>Pin 5, CTS</td>
</tr>
<tr>
<td></td>
<td>Pin 4, RQS</td>
</tr>
</tbody>
</table>

*The Haas controller requires the marked signals as a minimum. Connect the remaining signals if required.

Pin 1 on the DB-9 is data carrier detect and is not commonly used. Pin 1 on the DB-25 is used for the cable shield/earth ground and should be connected at one end to minimize noise.

The Haas dual controller has 2 serial ports, both up and down load ports, (as previously described, except it is a DCE). The down load, or Down Line, connector is only used when one or more control is used. The first control’s down line or “RS-232 OUT” connector connects to the second control’s up line or “RS-232 IN” connector, etc. The CNC control is connected to the first control’s up line or “RS-232 IN” connector.

The RS-232 interface sends and receives **seven data bits, even parity, and two stop bits**. The data rate can be between 110 and 19200 bits per second. When using RS-232, make sure that Parameters 26 (RS-232 Speed) and 33 (X-on/X-off Enable) are set to the same value in the rotary control as the PC. Parameter 12 must be set to 3 in order to coordinate mill and control motion. This will prevent Aux. axis position mismatch alarm (355) when in handle jog mode. If Parameter 33 is set to **on**, the control uses X-on and X-off codes to control reception; be sure the computer is able to process these. It also drops CTS (pin 5) at the same time it sends X-off and restores CTS when it sends X-on. The RTS line (pin 4) can be used to start/stop transmission by the controller or the X-on/X-off codes can be used. The DSR line (pin 6) is activated at power-on of the controller and the DTR line (pin 20 from the PC) is not used. If Parameter 33 is 0, the CTS line can still be used to synchronize output. When more than one Haas rotary control is daisy-chained, data sent from the PC goes to all of the controls at the same time. That is why an axis selection code (Parameter 21) is required. Data sent back to the PC from the controls is OR’ed together so that, if more than one box is transmitting, the data will be garbled. Therefore, the axis selection code must be unique for each controller. The serial interface may be used in either a remote command mode or as an Upload/Download path.
RS-232 Remote Command Mode
Parameter 21 cannot be zero for the remote command mode to operate; the control
looks for an axis select code defined by this parameter. The controller must also
be in RUN mode to respond to the interface. Since the control powers-on in RUN
mode, unattended remote operation is possible.

Commands are sent to the controller in ASCII code and terminated by a carriage
return (CR). All commands, except for the B command, must be preceded by the
axis select code (U, V, W, X, Y, Z). The B command does not require the select
code, since it is used to activate all axes simultaneously. The ASCII codes used to
command the control follow:

RS-232 Single Axis Commands
The following are the RS-232 commands, where X is the selected axis:

- **xSnn.nn** Specify step size or absolute position.
- **xFnn.nn** Specify feed rate in units/second.
- **xGnn** Specify G code.
- **xLnnn** Specify loop count.
- **xP** Specify servo status or position. (This command causes
 addressed controller to respond with servo posi-
 tion if normal operation is possible, or otherwise with the
 servo status.)
- **xB** Begin programmed step on X-axis.
- **B** Begin programmed step on all axes at once.
- **xH** Return to Home position or use home offset.
- **xC** Clear servo position to zero and establish zero.
- **xO** Turn servo on.
- **xE** Turn servo off.

RS-232 Dual Axis Commands (TRT)

A-Axis- Same as above.
B-Axis

- **xB** Specify step
- **xGnnn.nn** Specify feed rate
- **xGBnn.nn** Specify G code
- **xLBnnn** Specify loop count
- **xPB** Specify servo status or position
- **xHBB** Return to HOME position or use home offset
- **xCBB** Clear servo position to zero and establish zero

For both A&B:

- **xB** Begin programmed step on X-axis
- **B** Begin programmed step on all axes at once
- **xO** Turn servo on
- **xE** Turn servo off
RS-232 Responses
The xP command is presently the only command that responds with data. It returns a single line consisting of:

- **xnnn.nnn** (servo at standstill at position nnn.nnn) or
- **xnnn.nnnR** (servo in motion past position nnn.nnn) or
- **xOn** (servo is off with reason n) or
- **xLn** (servo Home position lost with reason n)

Remote Operation with a FANUC CNC Control (HRT & HA5C)

FANUC control set-up requirements
There are several requirements that must be met before a Haas Servo Control can be interfaced with a FANUC controlled mill. These are as follows:

1. FANUC control with custom macro enabled and Parameter 6001, bits 1 and 4 set to “1”.

2. A serial port on the FANUC control must be available for use by the Haas rotary control while DPRNT program is running.

4. Shielded M-code relay cable Haas Automation Part Number: CNC
 - DB25 pinout: 1-1 2-2 3-3 4-4 5-5 6-6 7-7 8-8 20-20

Haas Parameters
Once the previous requirements have been met, revise the parameters of the Haas control. The following are the parameters that will need to be changed. (Initial settings. Change these only after the interface is functioning.)

<table>
<thead>
<tr>
<th>Parameter 1 = 1</th>
<th>Parameter 2 = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter 5 = 0</td>
<td>Parameter 8 = 0</td>
</tr>
<tr>
<td>Parameter 10 = 0</td>
<td>Parameter 12 = 3</td>
</tr>
<tr>
<td>Parameter 13 = 65535</td>
<td>Parameter 14 = 65535</td>
</tr>
<tr>
<td>Parameter 21 = 6 (see table 1)</td>
<td>Parameter 26 = 3 (see table 2)</td>
</tr>
<tr>
<td>Parameter 31 = 0</td>
<td>Parameter 33 = 1</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>0 = RS 232 upld/dnld prgrms</th>
<th>1 = U</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 = V</td>
<td>3 = W</td>
</tr>
<tr>
<td>4 = X</td>
<td>5 = Y</td>
</tr>
<tr>
<td>6 = Z</td>
<td>7,8,9 Reserved</td>
</tr>
</tbody>
</table>

Table 2

0 = 110	1 = 300
2 = 600	3 = 1200
4 = 2400	5 = 4800
6 = 72007	7 = 9600
8 = 19200	
Fanuc Parameters

The following Fanuc control parameters must be set to successfully communicate with the Haas rotary control.

- **Baud Rate**: 1200 (Initial setting. Change this only after interface is functioning.)
- **Parity**: Even (Required setting)
- **Data Bits**: 7 or ISO (If CNC control defines Data bits as word length + parity bit, set to 8)
- **Stop bits**: 2
- **Flow control**: XON / XOFF
- **Character Coding (EIA/ISO)**: ISO (Required setting, EIA will not work)
- **DPRNT EOB**: LF CR CR (“CR” is required, “LF” is always ignored by the servo control)
- **DPRNT**: Leading zeroes as blanks - OFF

Be certain to set FANUC parameters related to the actual serial port connected to Haas rotary control. The parameters have been set for remote operation. A program can now be entered, or run an existing program. There are several key items to consider to ensure your program will run successfully.

DPRNT must proceed every command sent to the Haas Control.

The commands are sent to the controller in ASCII code and terminated by a carriage return (CR).

All commands must be proceeded by an axis select code (U, V, W, X, Y, Z). For example, setting parameter 21 = 6, means Z will represent the axis code.

RS 232 Command Blocks

- **DPRNT[]**: Clear/Reset receive buffer
- **DPRNT [ZGnn]**: Loads G-code nn into step no. 00, “0” is a place holder
- **DPRNT[ZSnn.nnn]**: Loads Step Size nnn.nnn into Step no. 00
- **DPRNT[ZFnn.nnn]**: Loads Feed Rate nnn.nnn into Step no. 00
- **DPRNT[ZLnnn]**: Loads Loop Count into Step no. 00
- **DPRNT[ZH]**: Return home immediately without M-FIN
- **DPRNT [ZB]**: Activates Remote Cycle Start without M-FIN
- **DPRNT [B]**: Activates Remote Cycle Start without M-FIN regardless of Haas Servo Control Parameter 21 setting (*Not for general use in this application.*)

Notes:

2. Leading and trailing “0” must be included (correct: S045.000, wrong: S45).
3. When writing your program in the FANUC format it is important to **not** to have blank spaces or carriage returns (CR) in your DPRNT statement.
DPRNT Program Example

The following is an example of one way to program using the FANUC style.

```plaintext
O0001
G00 G17 G40 G49 G80 G90 G98
T101 M06
G54 X0 Y0 S1000 M03
POpen   (Open FANUC serial port)
DPRNT [ ]   (Clear/Reset Haas)
G04 P64
DPRNT [ZG090]   (Servo Control Step should now read “00”)
G04 P64
DPRNT [ZS000.000]   (Loads Step Size 000.000 into Step 00)
G04 P64
DPRNT [ZF050.000]   (Loads Feed Rate 50 units/sec into Step 00)
G04 P64
Mnn   (Remote Cycle Start, moves to P000.0000, sends M-FIN)
G04 P250   (Dwells to avoid DPRNT while M-FIN is still high)
G43 Z1. H01 M08
G81 Z-.5 F3. R.1   (Drills at: X0 Y0 P000.000)
DPRNT [ ]   (Make certain Haas Input Buffer is Clear)
G04 P64
#100 = 90.   (Example of correct Macro substitution)
DPRNT [ZS#100[33] ]   (Loads Step Size 090.000 into Step 00)
                     (Leading Zero converted to Space Param. must be off)
G04 P64
Mnn   (Remote Cycle Start moves to P090.000, sends M-FIN)
G04 P250
X0   (Drills at: X0 Y0 P090.000)
G80   (Cancels drill cycle)
PCLOS   (Close FANUC serial port)
G00 Z0 H0
M05
M30
```

Upload / Download

The serial interface may be used to upload or download a program. All data is sent and received in ASCII code. Lines sent by the controller are terminated by a carriage return (CR) and line feed (LF). Lines sent to the controller may contain a LF, but it is ignored and the lines are terminated by a CR.
Upload or download is started from Program mode with the G code displayed. To start an upload or download, press the minus (-) key while the G code is displayed and blinking. **Prog n** is displayed, where **n** is the currently selected program number. Select a different program by pressing a number key, then Start to return to Program mode or Mode to return to Run mode, or press the minus (-) key again and the display will show: **SEnd n**, where **n** is the currently selected program number. Select a different program by pressing a number key and then Start to begin sending that selected program, or press the minus (-) key again and the display will show: **rEcE n**, where **n** is the currently selected program number. Select a different program by pressing a number key and then Start to begin receiving that selected program, or press the minus (-) key again to return the display to Program mode. Both uploading and downloading can be terminated by pressing CLR.

Programs sent or received by the controller have the following format:

Single Axis

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td></td>
</tr>
<tr>
<td>N01 G91 X045.000 F080.000 L002</td>
<td></td>
</tr>
<tr>
<td>N02 G90 X000.000 Y045.000 F080.000</td>
<td></td>
</tr>
<tr>
<td>N03 G98 F050.000 L013</td>
<td></td>
</tr>
<tr>
<td>N04 G96 P02</td>
<td></td>
</tr>
<tr>
<td>N05 G99</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Dual Axis Programs (Sent to Control)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td></td>
</tr>
<tr>
<td>N01 G91 S000.000 F065.000 G91 S999.999 F060.000</td>
<td></td>
</tr>
<tr>
<td>N02 G91 S-30.000 F025.001 G91 S-30.000 F050.000</td>
<td></td>
</tr>
<tr>
<td>N03 G97 L020</td>
<td></td>
</tr>
<tr>
<td>N04 G99</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

Dual Axis Programs (Received by Control)

Mode dependant (M:A or M:B):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td></td>
</tr>
<tr>
<td>N01 G91 S045.000 F080.000 L002</td>
<td></td>
</tr>
<tr>
<td>N02 G90 S000.000 F080.000</td>
<td></td>
</tr>
<tr>
<td>N03 G98 F050.000 L013</td>
<td></td>
</tr>
<tr>
<td>N04 G96 P02</td>
<td></td>
</tr>
<tr>
<td>N05 G99</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

The controller will insert steps and re-number all required data. The P code is the destination of a subroutine jump for G code 96.

The % must be found before the controller will process any input and it will always begin output with a %. The N code and G code are found on all lines and the remaining codes are present as required by the G code. The N code is the same as the step number display in the controller. All N codes must be continuous starting from 1. The controller will always end output with a % and input to it is terminated by a %, N99 or G99. Spaces are only allowed where shown.
The controller will display “SEnding” as a program is sent. The controller will display “LoAding” as a program is received. In each case the line number will change as the information is sent or received. An error message will be displayed if bad information was sent, and the display will indicate the last line received. If an error occurs, make sure that the letter O was not inadvertently used in the program instead of a zero. Also see the “Troubleshooting” section.

When an RS-232 interface is used, it is recommended that the programs be written in Windows “Notepad”, or another ASCII program. Word processing programs, such as Word, are not recommended, as they will insert extra, unnecessary information.

Upload/Download functions do not need an axis select code as they are manually initiated by an operator at the front panel. However, if the select code (Parameter 21) is not zero, an attempt to send a program to the control will fail, as the lines do not begin with the correct axis select code.

HA2TS Setup and Operation (HA5C)

1. Position the tailstock so that the tailstock quill is extended between 3/4” to 1-1/4”. This will optimize spindle rigidity (item A).

2. Tailstock to HA5C head alignment can be accomplished by simply pushing the tailstock (item B) to one side of the T-slots prior to tightening the flange nuts to 50 ft-lbs. Precision locating pins mounted on the bottom of the tailstock allow for quick alignment, since the pins are parallel within 0.001” of the spindle bore. However, make sure both tailstock units are positioned to the same side of the T-slot. This alignment is all that is needed for the recommended use of live centers.

3. Set the air regulator (item C) between 5-40 psi., with a maximum 60 psi. It is recommended is to use the lowest air pressure setting that provides the required rigidity for the part.
USE OF COLLETS, CHUCKS, AND FACE PLATES

HA5C – The unit accepts standard 5C collets and step collets. When inserting the collets, align the keyway on the collet with the pin inside the spindle. Push the collet in and turn the collet drawbar clockwise until proper collet tightness is obtained.

Chucks and face plates use the 2 3/16-10 threaded nose on the spindle. Chucks that are have no more than a 5” diameter and weigh less than 20 pounds are recommended. Pay special attention when installing chucks, always make sure that the thread and the outside diameter of the spindle are free of dirt and chips. Apply a thin coating of oil to the spindle, and screw the chuck on gently until it seats against the rear of the spindle. Tighten the chuck to approximately 70 ft.-lb with a strap wrench. Always use a firm, steady pressure to remove or install chucks or face plates, otherwise damage to the indexing head may result.

WARNING!

Never use a hammer or pry bar to tighten the chuck, this will damage the precision bearings inside your unit.

A6AC Air Collet Closer (HRT)
The A6AC collet closer bolts to the back of the HRT A6 (See the following illustration). The drawbar and collet adapters are designed to mate with the Haas A6/5C spindle nose. The optional A6/3J and A6/16C can be obtained from a local tooling distributor. Failure to follow the A6AC installation instructions may result in thrust bearing failure.

NOTE: A special drawtube adapter is required for the 16C and 3J. Make sure to supply the tooling distributor with spindle/drawbar details as shown.
Clamping Force and Air Supply

The A6AC is a 1-3/4” diameter thru-hole type closer, adjustable from the rear. It holds parts using spring force to provide up to 0.125” of longitudinal movement and up to 5000 lbs. of draw force at 120 psi.

Adjustment

To adjust the collet closer, align a collet with the keyway, push the collet into the spindle, and turn the draw bar clockwise to pull the collet in. To make the final adjustment, place a part in the collet, turn the air valve to the Unclamped position to charge the cylinder and compress the spring mechanism. Tighten the draw bar until it stops, then loosen it 1/4-1/2 turn and turn the air valve to the “Clamped” position (adjusted for maximum clamping force). To reduce clamping force, back off on the draw bar or reduce the air pressure before adjusting.

Air Collet Closers

Model AC25 / AC100 / AC125 for the HA5C, and T5C

The AC25 is a non thru-hole type closer that holds parts using air pressure, which provide up to 3000 pounds of draw force, depending on air pressure supplied. The unit provides .03” of longitudinal movement so diameter variations of up to .007” can be clamped securely without readjustment.

The AC100 is a thru-hole type closer that holds parts using spring force, providing up to 10,000 pounds of draw force. The unit provides .025” of longitudinal movement so diameter variations of up to .006” can be clamped securely without readjustment. Set air pressure between 85 and 120 psi.

The AC125 air collet closer has a 5/16” thru-hole that will allow small diameter stock to extend out the back of the unit. The AC125 also has a large diameter counterbore in the drawtube that allows stock to pass through a standard 5C collet up to approximately 1.6” out the rear of the collet. This also allows the use of most standard collet stops. The AC125 uses air pressure to provide up to 12,000 lb. of draw force (adjustable through a customer supplied air pressure regulator). The drawtube travel of 0.060” allows the unit to securely clamp parts with up to .015” variation in diameter without readjustment.
Manual Collet Closer Removal (Model AC25 / AC100 / AC125)
Before installing the an air collet closer on the unit, you must first remove the manual collet closer assembly (Item B). Remove the top and bottom mounting bolts for the handle (Item A) and slide the handle off the collet closer assembly. Remove the collet closer, slide the collet closer assembly out the back of the spindle. Remove the flattened screw (Item C) and locking pawl (Item B) and unscrew the spindle nut (Item D). (It may be necessary to use two 1/8" pins and a screwdriver to break the spindle nut loose.)

AC25 Collet Closer Installation
To install the AC25, install new spindle nut (Item F), locking pawl (Item C) and FHCS (Item D). Insert drawtube of assembled AC25 (Item E) into back of HA5C spindle and screw the main body onto the back of the spindle. Tighten with strap wrench to approximately 30 ft-lb. Mount valve assembly (Item B) to top of HA5C as shown using ½-13 SHCS (Item A). Assemble fittings of copper tube (Item G) between valve and fitting on back of collet closure and tighten.

CAUTION! The Model AC25 Collet Closer relies on air pressure to maintain clamping force and will release if the air supply is accidentally removed. If this presents a fail-safe problem, an air switch should be installed in-line to stop machining operations if the air supply should fail.

AC25 Collet Installation
To install a collet, line the collet keyway up with the spindle key and insert the collet. There are two ways to turn the draw tube to adjust the collet:

1. A collet with a 11/64" or larger opening can be adjusted using a 9/64" hex wrench.

2. Collets smaller than 11/64" are adjusted by turning the drawtube with a pin through the slot. Look between the back face of the worm gear and collet closer to see the holes in the draw tube. It may be necessary to jog the spindle until they are visible. Use a 9/64 diameter pin to rotate the draw tube and tighten the collet. There are 15 adjustment holes, so it will take 15 steps to turn the draw tube one full revolution. Put a part in the collet and tighten until it grips the part then back the draw tube off ¼ to ½ turn. Not for multi-head HA5C units.
AC100 Collet Closer (HA5C only) Installation

To install the **AC100**, assemble the brass air fittings with the valve and slip ring as shown in the figure below. When assembling the fittings, ensure they are all tight and square with the valve. Mount the valve to the bracket with the 10-32 x 3/8" BHCS. Bolt the bracket to the back of the indexing head with the ¼-20 x ½" SHCS and ¼" split lock washers. Ensure the slip ring and bracket are square so that the unit can rotate freely before tightening down the bracket. Connect the valve and slip ring with the copper tubing and tighten down these fittings.

CAUTION! The **AC100** Collet Closer is designed to clamp parts when the air pressure is off. Do not index while air pressure is applied to the unit; this causes excessive loading on the slip ring and will damage the motor.

AC100 Collet Installation

NOTE: The air pressure for the AC100 should be set between 85 and 120 psi.

Align the collet keyway with the spindle key and insert the collet. Hold the collet in place and tighten down the drawbar by hand. With the air pressure valve on, place your part in the collet and tighten the drawbar until it stops. Back off ¼-½ turn then turn the air off. The collet will clamp your part with maximum holding power.

For thin-walled or fragile parts, turn the air pressure off, place your part in the collet, and tighten the drawbar until it stops. This is your starting point for adjustment at the loose end. Turn the air pressure valve on and tighten the drawbar ¼-½ turn. Turn the air off and the collet will begin to clamp your part. Repeat until you achieve the desired amount of clamping force.

AC125 Collet Closer

Carefully insert drawtube of assembled AC125 (Item A), into back of HA5C spindle and screw the main body onto the back of the spindle.

CAUTION: Hitting the collet assembly against the spindle can cause damage to the threads on the end of the draw bar.
Tighten with a strap wrench to approximately 30 ft./lbs. Mount the valve assembly (Item B) to the top of the HA5C as shown using 1/2-13 SHCS (Item C). Assemble the fitting (Item D) part number 58-16755 and copper tube (Item E) part number 58-4059 between the valve and fitting on the back of the collet closure and tighten.

Never use a hammer to remove or install these items. The shock will damage the precision bearings and gears inside the unit.

Collet Installation (Model AC125)

All collets used with the AC125 must be clean and in good condition. To install a collet in the AC125, align the collet keyway with the spindle key and insert the collet. Insert a 5/16” hex wrench into the hex in the back of the drawtube, and turn the drawtube to engage the collet. Tighten the drawtube until it grips the part, and then back off approximately 1/4 turn. This will be a good starting point for fine-tuning the grip range.

Collet Closer Removal (Model AC25 / AC100 / AC125)

Air collet closers fitted at the factory are not intended to be removed. However, if servicing is required, use a woven strap wrench to remove the collet assembly. Do not use a hammer or impact wrench to remove the closer bodies; damage may occur to the gear and bearing sets. When re-installing the collet closer, use a strap wrench and tighten to approximately 30 ft-lb.

HAAS Manual Draw Tube (HMDT)

The HMDT may be used for standard and tilt multi-head 5C units in place of pneumatic closers where a thru hole is required or space constraints exist. The HMDT fits within the body of the 5C unit and has a 1.12” (28mm) thru hole. The collet is tightened using a standard 1-1/2” (38mm) socket and a torque wrench for consistency.

Collet Sticking

NOTE: To prevent excessive wear and collet sticking, make sure collets are in good condition and free from burrs. A light coat of Molybdenum grease on the collet wear surfaces will extend the life of the spindle/collet and help prevent sticking.

When using the AC25, releasing a collet is accomplished by removing the air supply. The collet is then pushed out by a heavy spring inside the air collet.

The AC100 uses shop air to move the drawbar forward and release the collet. Increasing the air pressure can help free the collet when it sticks; however, do not exceed 150 psi.
The AC125 uses shop air to pull the drawtube in, and a heavy internal spring to push the drawtube out and release the collet. If, after repeated use, the spring will not push the collet out, use one of the following methods to remove the collet and lubricate the outside of the collet with a light grease before re-inserting:

1. If the three-way air valve becomes clogged, exhaust airflow may be restricted, causing the collet to stick in the taper. Leave the valve clamped, and connect and disconnect the air supply several times.

2. If the above procedure does not free the collet, switch the valve to the unclamped position, then gently tap the back end of the drawtube with a plastic-faced mallet.

HA5C Tooling Locations

The HA5C is equipped with tooling points in order to speed setups. One of the most time-consuming procedures in setup is aligning the head with the table. On the mounting surfaces are two 0.500” bored holes on 3.000” centers. The holes on the bottom surface are parallel to the spindle within 0.0005” per 6 inches and on center within ±0.001”. By boring matching holes in the tooling plate, setups become routine. Using tooling holes will also prevent the head from shifting on the mill table when the part is subjected to heavy cutting forces.

On CNC mills, a machined stepped plug of 0.500” diameter one side and 0.625” on the other comes with the Haas head. The 0.625” diameter fits into the T-slot of the mill table. This will give quick parallel alignment.

Dual Axes Coordinate System

The layout of the A and B axes of the Haas five-axis control are shown in the following figures. The A-axis is rotary motion about the X-axis, while the B-axis determines rotary motion about the Y-axis. The right hand rule can be used to determine axis rotation for the A and B axes. When placing the thumb of the right hand along the positive X-axis, the fingers of the right hand will point in the direction of tool movement for a positive A-axis command. Likewise, when placing the thumb of the right hand along the positive Y-axis, the fingers of the right hand will point in the direction of tool movement for a positive B-axis command. It is important to remember that the right hand rule determines direction of tool movement and not the table movement direction. For the right hand rule, the fingers will point opposite of the positive rotary table movement. Refer to the following figures.
NOTE: The previous figures represent one of many possible machine tool and table configurations. Different table movements are possible, for positive directions, depending on the equipment, parameter settings, or five-axis programming software being used.

OPERATION

THE FRONT PANEL DISPLAY

The front panel displays the program and mode for the rotary unit. The display consists of 4 lines with up to 80 characters per line. The first line displays current spindle position (POS), followed by the G code display (G) then the loop count display (L).

The second and third lines display the step number (N) followed by the step size, then the feed rate (F). The left three characters, on the second or third line, are the step number and go from 1 to 99. They cannot be changed with the numeric keys and are selected by using the Step Scan arrow buttons.

The fourth line is the control status line. It provides three control operations: RUN, STOP, ALARM. These operations are followed by the percentage of load, and the last status of the air brake.

Every step (or block) contains several pieces of information that are necessary for the program, and they are displayed simultaneously. The data is preceded by a letter(s) to indicate what type of information is displayed.

Successive pushes of the right arrow button will cause the display to cycle to the next register, that is, Position - Step Size - Feed Rate - Loop Count - G Code - Position - etc. In Run mode, the right arrow button selects among any of these five displays. In Program mode, all of these but the position may be displayed.
Think of the display as a window that shows only one command of the program at a time. The Display Scan button allows you to scan sideways and see all the information for a single step. Pushing the Display Scan button shifts the window one place to the right, looping from left to right at the end of the row. Pushing the up arrow displays the previous step, the down arrow displays the next step. Using these three keys, it is possible to scan to anywhere in the program. If a new number is entered in that position, the number is stored when scanned to another position or returned to Run mode.

A) Main Power switch to turn the unit on (back panel).
B) Cycle Start – Begins a step, stops a continued operation, inserts a step, or turns the servo on.
C) Emergency Stop – Turns off the servo when on and aborts the step in progress.
D) Jog – Causes the servo to move in either the forward or backward direction at a rate defined by the last numeric key pressed.
E) Load meter – Indicates (%) of spindle load. A high load indicates excessive load or workpiece support misalignment. Hi-LoAd or Hi Curr alarms may occur if not corrected. Damage to the motor or table may result if excessive loads continue (See “Troubleshooting” section)
F) Zero Return – Causes the servo to return to the Home position, search for mechanical Home, delete a step, or move forward to the mechanical offset.
G) Zero Set – Clears the entered data, resets program to 0, or defines the present servo position as Home.
H) Minus Key – Selects negative step values or Prog/Upload/Download functions.
I) Step Scan – Scans step numbers from 1 through 99 in RUN mode. It scans up/down in Program mode.
J) Display Scan – Scans display to show either the screen with Position, Step Angle, Feed Rate, Loop Counts, G Code, and status line, or position and status line in RUN mode. It scans left/right in Program mode.

K) Mode/Run Prog – Switches from Run mode to Program mode (with blinking display).

L) Data entry keys and jog speed selection.

M) 4-line display – Show current data, i.e. spindle position, Feedrates, Loop Count, Step Angle, G Code and Present step number (Step numbers 1 to 99 are available). Also displays errors when powered up.

There are twenty characters that can be displayed on each line of the four lines in the display. The left two characters are the step numbers, from 1 to 99. They cannot be changed with the numeric keys and are selected by using the Step Scan arrow buttons. Every step (or block) contains several pieces of information that are necessary for your program, but they cannot be displayed simultaneously. Use the Display Scan button to view the data for each step. The data is preceded by a letter to indicate what type of information is being displayed. For example, if an F precedes the number, the displayed data is for feed rates. The “Display Scan” key is used to move from one display to the next.

Dual Axis Rotary Products

Three variables at the bottom of the display represent the operation the dual control is in. The “S:” means servo on. The “R:” means running, and the “M:” means the axis mode. Each is followed by an axis letter A or B. When the servo is on and both axes are enabled, the control displays “S:AB R: M:A”. When both axes are running the control displays “S:AB R:AB M:A”.

Display Examples

The graphic to the right show what is displayed when the control is powered up and “Cycle Start” is pressed.

The display shows that the A and B axes have not been homed and that both are enabled (Parameter 47 = 0). The “S:” is short for “Servo On”, and “AB” represents the axis that has its servo on. The “M:” represents the axis mode the control is in and the following letter(s) represent the axis available for operation.

Both A and B axes are enabled when Parameter 47 is set to 0. The A-axis is disabled when it is set to 1 and the B-axis is disabled when it is set to 2. The example to the right show what is displayed when Parameter 47 set to 2.
In Program mode, the blinking numbers can be edited. Use the Display Scan button to move sideways, to view all the information for that step. Pushing the Display Scan button shifts the window one place to the right, looping from left to right at the end of the row. Push the up arrow to view the previous step, and the down arrow to view the next step. If a new value is entered, it is saved once a new step is selected, or when the rotary control is returned to Run mode.

Turning the Servo On

There is a single 115V AC (220V AC - TRT units) supply required by the controller. Ensure that the front panel power switch is turned off and connect the motor cable(s) from the table/indexer and the power cord. Turn the controller on. The unit will go through a self-test and then display.

If any other message is displayed, refer to the “Error Codes” section of this manual. The numbers only remain in the display for about one second. The “Por On” message indicates that the servos (motors) are turned off (this is normal). Pressing any key allows you to continue operation but the low battery may have caused loss of your program parameters. Press the front panel Start switch once. The panel now indicates: **01 no Ho** This indicates the motor(s) are now powered but zero position is not defined (there is no home position).

Finding the Zero Position

Press the Zero Return button to start the automatic homing operation. When the table/indexer stops, the display indicates: **01 Pnnn.nnn**

Zero Return function will depend on the selected axis for 2-axis rotary tables i.e. M:A or M:B (use the right arrow key to select the desired axis).

If the display shows a non-zero number, press the Clear button for three seconds.

Manually Finding The Zero Position

Use the left/right Jog switch to position the table to the position that you want to use as zero and then press and hold the Clear button for three seconds. The display should now indicate: **01 P 000.000**

This indicates that the zero position is established and the controller is ready to begin normal operations. If a different position is used as zero, jog the table to the new position and press the Clear button for three seconds. The display will again indicate: **01 P 000.000**

If the new Home position is cleared, the display will show a non-zero position. In this case, press the Zero Return button and the table will move to the pre-defined zero position.
OFFSETTING THE ZERO POSITION

Use the left/right Jog switch to position the rotary unit to the position to use as zero and press the Clear button for 3 seconds. The following is displayed: **01 P000.000**

Dual-axis units – Press the right arrow button to select the B-axis and repeat.

This indicates that the zero position is established and the controller is ready to begin normal operations. If a different position is used as zero, jog the indexer to the new position and press the Clear button for 3 seconds. The following is displayed: **01 P000.000**

If there is a zero offset defined, a non-zero number is displayed. In this case, press the Zero Return button once and the unit will move forward to the predefined zero position. For 2-axis units, press the right arrow key, to select the B (rotary) axis, and repeat.

NOTE: 2-axis units using a dual axis control will zero-return at a slower speed. To save time, jog the unit to a position close to zero, before turning the unit off.

JOGGING

The rotary unit is jogged using the number buttons (0-9). Each number is a percent of the maximum speed. Jog speed is selected with the front panel number keys and is a fraction of the maximum feed rate.

Select the axis to jog using the right arrow button on 2-axis units.

If the control is set up for linear motion, there are both positive and negative travel limits possible. If a step is started which would have caused the control to exceed the travel limits, the following message is shown: **2 FAr**

The control will not execute the step. See Parameter 13 and 14 for the A-axis travel range, and Parameter 59 and 60 for the B-axis travel range.

ERROR CODES

A set of self tests are run when the control is turned on and the results may indicate a control fault. Intermittent low voltage errors or power failures may be the result of inadequate power to the controller. Use short heavy duty extension cords. Make sure that the supplied power is a minimum of 15 amps at the plug.

- **Blank front panel** - Program CRC failure (bad RAM, or cycle power if bad ROM to RAM program transfer.)
- **E0 EProm** - EPROM CRC error
- **Frt Pnel Short** - Front panel switch closed or shorted
- **Remote Short** - Remote Start switch closed and enabled, or remote CNC input shorted (remove cable to test)
- **RAM Fault** - Memory fault
Stored Prg Flt - Stored program fault (low battery)
Power Failure - Power failure interrupt (low line voltage)
Enc Chip Bad - Encoder chip bad
Interrupt Flt - Timer/interrupt fault
1KHZ Missing - Clock generation logic failure (1 kHz signal missing)
Scal Cmp Lrge - Exceeding maximum allowed rotary scales compensation. HRT210SC only

0 Margin Small - (Zero margin too small) Distance between the home switch and the final motor position, after seeking home, is either less than 1/8 or greater than 7/8 of a motor revolution. This alarm occurs while homing the rotary table. Parameter 45, for the A-axis or Parameter 91 for the B-axis must be set properly. Use the default value (0) for the axis parameter (45 or 91) and add 1/2 of a motor revolution. 1/2 motor revolution is calculated by taking the value in Parameter 28 for the A-axis, or Parameter 74 for the B-axis and dividing by 2. Enter this value for parameter 45 or 91 and re-home the rotary table.

SERVO OFF CODES

At any time the servo (motor) is turned off, a reason code is displayed along with the following codes. An “A” or “B” may precede the code for TRT units. This is the reference to the axis that caused the fault.

Por On - Power just applied (or failed previously)
Servo Err Lrge - Servo following error too large (see Parameter 22 or 68)
E-Stop - Emergency stop
Servo Overload - Software fuse. Unit was turned off due to overload condition (see Parameter 23 or 69)
RS-232 Problem - Remote RS-232 commanded off
Encoder Fault - Z channel fault (bad encoder or cable)
Scale Z Fault - Rotary scale Z channel fault (bad rotary scale encoder or cable) HRT210SC only
Z Encod Missing - Z channel missing (bad encoder or cable)
Scale Z Missing - Rotary scale Z channel missing (bad rotary scale encoder or cable) HRT210SC only
Regen Overheat - High line voltage
Cable Fault - Break detected in encoder cable wiring
Scale Cable - Break detected in rotary scale cable wiring (HRT210SC only)
Pwr Up Phase Er - Power up phase error
Drive Fault - An overcurrent or drive fault.
Enc Trans Flt - Encoder transition fault had been detected.
Indr Not Up - Platter not fully up (HRT320FB only). Can be caused by low air pressure.
Emergency Stop

Pressing the Emergency Stop button will turn the servo off, cause the spindle to decelerate and stop, and display, “E-StoP”. If the last step was not completed, the control will remain on that step, rotary position has not been lost. To restart push Cycle Start twice (once to turn the servo on, and again to restart the step). The remote cycle start/finish will not function until the Emergency Stop is removed by pushing the Start button.

Programming the Controller

Introduction

Programming is done through the keypad on the front panel. The other buttons, on the right column of the keypad, are used for program control.

The Mode button selects between the “Run” mode and “Program” mode. The display is steady when in “Run” mode, and flashing on and off, when in “Program” mode.

“Run” mode is used to execute pre-programmed commands and “Program” mode is used to enter commands into memory. The servo loop can be turned on in either mode and will hold the motor to a commanded position when idle.

When the controller is first turned on, it is in “Run” mode but the servo is turned off. This is indicated by: Por On. Pressing the Start key will allow you to continue operation.

Always press and immediately release a button. Pushing and holding a button down will cause the button to repeat, however, this is useful when scrolling through a program. Some buttons have more than one function depending on the mode.

How Data is Stored in the Controller’s Memory

(TRT and TRs)

<table>
<thead>
<tr>
<th>Step Number</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
<th>G code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (A-axis)</td>
<td>90.000</td>
<td>80</td>
<td>01</td>
<td>91</td>
</tr>
<tr>
<td>2 (A-axis)</td>
<td>-30.000</td>
<td>05</td>
<td>01</td>
<td>91</td>
</tr>
<tr>
<td>3 (A-axis)</td>
<td>0</td>
<td>80</td>
<td>01</td>
<td>99</td>
</tr>
<tr>
<td>through</td>
<td>0</td>
<td>80</td>
<td>01</td>
<td>99</td>
</tr>
</tbody>
</table>

- your program data -

window

Pushing the right arrow key moves the window to the right. Pushing the up arrow or down arrow keys moves the window up or down.
Entering a Step

Single axis

To enter a step into the controller’s memory, press the Mode button, which puts the control in “Program” mode. The display will begin blinking and show a step size. Clear the last program by pressing and holding the Clear button for 3 seconds, if necessary.

To enter a 45° step, type "45000". The display will show, “N01 S45.000 G91” and on a line below, “F60.272 L001” (the F value is the max speed for the rotary table). Press the down arrow button. This will store the 45° step. Enter a feed rate of 20° per second, by type, “20000”. The display will show “01 F 20.000”. Return the controller to “Run” mode by, pressing the Mode button.

Start the 45° step by pressing the Cycle Start button, the table should move to the new position.

2-Axis

To enter a B-axis 45° step and a simultaneous rotary 90° step, press the right arrow and enter, “45000”. The display will show: 01 A 45.000 (with the M:A display).

Press the right arrow button. This will cause the 45° step to be stored and the feed rate to be displayed.

Start the 45° step by pressing the Cycle Start button. The indexer should move to the new position and, at the end of the step, the display should indicate:

01 P045.000
P090.000

To enter a feed rate of 80° per second, for the A-axis, press right arrow again and enter, “80000”. The display should now indicate: 01 A F 80.000.

Then press the right key twice and enter, “90000”. The display should now indicate: 01 B 90.000. Enter a feed rate of 80° per second for the B-axis, by pressing the right arrow again and enter, “80000”. The display should now indicate: 01 B F 80.000. To return the controller to the “Run” mode, press the Mode button. The display should now indicate:

01 A P000.000
B P000.000

Start the program by pressing the Cycle Start button. The indexer should move to the new position and, at the end of the step, the display should indicate:

01 A P045.000
B P090.000
PUTTING A PROGRAM INTO MEMORY

NOTE: All data is automatically stored in memory when a control button is pressed.

Programming begins with ensuring that the controller is in Program mode and at step number 01. To do this, press the Mode button while the unit is not in motion. The displays must be blinking. Next, push and hold the Clear key for five seconds. You have now cleared the memory and are at step one and ready to begin programming, “01 000.000” is displayed. Please note that the memory does not have to be cleared each time data is entered or changed. Data in the program can be changed simply by writing new data over old.

Seven programs can be stored in a single-axis control (numbered 0-6) and 4 can be stored in a dual-axis (0-3). To access a program, press the minus key while showing a g code. The display will change to: Prog n. Press a number key to select a new program and then press the Mode key to return to Run mode or the start key to continue with the Program mode. Each one of the possible 99 steps in a program must contain a G code (G) and one of the following:

a) Step size or position command shown as a number with possible minus sign,

b) Feed rate shown with a preceding F

c) Loop count shown with a preceding L

d) Subroutine destination with a preceding Loc

To display the additional codes associated with a step, press the right arrow key.

Some of these entries are not allowed for particular G codes and either cannot be entered or are ignored. Most steps are incremental position commands and this is the default G code (91). The G codes 86, 87, 89, 92, and 93 should be used with the CNC relay function disabled (Parameter 1 = 2).

Enter your step size, in degrees, to three decimal places. The decimal places must always be entered, even if they are zero. Enter a minus sign (-) for opposite rotation. To edit a feed rate or loop count, push the right arrow key to view the entry and input the data.

If you are programming for a part that does not use feed rates or loop counts, simply push the down arrow to go to the next step. Insert the G code and step size and move on to the next step. The step will automatically be set to the fastest feed rate and a loop count of one.

If you enter a wrong number, or one that is out of limits, the control will display: Error. To correct this, push the Clear button and enter the correct number. If you are entering a valid number and an error still appears, check Parameter 7 (Memory Protect).
When the last step is entered, an end code must be in the following step. Note:
Steps 2 through 99 are set to the end code when the memory is cleared. This
means that it is not necessary to enter G99. If you are removing steps from an
existing program, make sure that you have entered a G99 after the last step.

NOTE: The HRT320FB does not use a feedrate; it indexes at maximum
speed.

G Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G28</td>
<td>Return to home position (same as G90 with step 0)</td>
</tr>
<tr>
<td>G33</td>
<td>Continuous motion</td>
</tr>
<tr>
<td>G73</td>
<td>Peck cycle (linear operation only)</td>
</tr>
<tr>
<td>G85</td>
<td>Fractional circle division</td>
</tr>
<tr>
<td>G86</td>
<td>Turn CNC relay on</td>
</tr>
<tr>
<td>G87</td>
<td>Turn CNC relay off</td>
</tr>
<tr>
<td>G88</td>
<td>Return to Home position (same as G90 with step 0)</td>
</tr>
<tr>
<td>G89</td>
<td>Wait for remote input</td>
</tr>
<tr>
<td>G90</td>
<td>Absolute position command</td>
</tr>
<tr>
<td>G91</td>
<td>Incremental command</td>
</tr>
<tr>
<td>G92</td>
<td>Pulse CNC relay and wait for remote input</td>
</tr>
<tr>
<td>G93</td>
<td>Pulse CNC relay</td>
</tr>
<tr>
<td>G94</td>
<td>Pulse CNC relay and run next L steps automatically</td>
</tr>
<tr>
<td>G95</td>
<td>End of program/return but more steps follow</td>
</tr>
<tr>
<td>G96</td>
<td>Subroutine call/jump (destination is a step number)</td>
</tr>
<tr>
<td>G97</td>
<td>Delay by L count/10 seconds (down to 0.1 second)</td>
</tr>
<tr>
<td>G98</td>
<td>Circle division (circular operation only)</td>
</tr>
<tr>
<td>G99</td>
<td>End of program/return and end of steps</td>
</tr>
</tbody>
</table>

2-Axis Note: An axis with G95, G96, or G99 will be run regardless of the other axis’
G-code commands. If both axes contain one of these G-codes, only the A-axis G-
code will run. Each step will wait for the slower axis to finish all its loops before go-
ing to the next step. When G97 is programmed for both axes, the amount of delay
is the sum of both delays.

Continuous Motion

G33 uses the Cycle Start button to start continuous motion. When the button is
held, G33 motion continues until the button is released. An M-Fin signal from the
CNC control is connected to the “Remote Cycle Start”, and an arbitrary feed rate
is entered in the feed rate field. The direction of G33 motion is clockwise when the
step size is set to 1.000 and counter-clockwise when it is set to −1.000. The loop
count is set to 1.
Absolute / Incremental Motion

G90 and G91 can be used for absolute (G90) or incremental (G91) positioning. G90 is the only command allowing absolute positioning. Note that G91 is the default value and provides incremental motion.

G28 and G88 both provide for a programmed home command. The entered feed rate is used to return to the zero position.

Feed Rates

The feed rate display ranges between 00.001 and the maximum for the rotary unit (see table). The feedrate value is preceded by an F and displays the feed rate that will be used for the selected step. The feed rate corresponds to degrees rotated per second. For example: A feed rate of 80.000 means the platter will rotate 80° in one second.

Loop Counts

Loop Counts allows a step, to repeat, up to 999 times, before going on to the next step. The loop count is an “L” followed by a value between 1 and 999. In “Run” mode, it displays the remaining loop counts for the selected step. It is also used in conjunction with the Circle Division function to enter the number of divisions in the circle from 2 to 999. The Loop Count specifies the number of times to repeat a subroutine, when used with G96.

Subroutines (G96)

Subroutines allow repetition of a sequence up to 999 times. To “call” a subroutine, enter G96. After entering 96 move the blinking display 00 preceded by Step# registered to enter the step to jump to. The control will jump to the step called out in the Step# register, when the program reaches the G96 step. The control will execute that step and the ones following until it until a G95 or G99 is found. The program then jumps back to the step following the G96.

A subroutine can be repeated by using a the loop count of a G96. To end the subroutine, insert either a G95 or G99 after the last step. A subroutine call is not considered a step by itself since it executes itself and the first step of the subroutine. Note that nesting is not permitted.

Delay Code (G97)

G-code 97 is used to program a pause (dwell) in a program. For example, programming a G97 and setting L = 10 will produce a 1 second dwell. G97 does not pulse the CNC relay at step completion.

Maximum Feed Rates

<table>
<thead>
<tr>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA5C</td>
<td>270.000</td>
</tr>
<tr>
<td>HRT 160</td>
<td>80.000</td>
</tr>
<tr>
<td>HRT 210</td>
<td>60.000</td>
</tr>
<tr>
<td>HRT 310</td>
<td>50.000</td>
</tr>
<tr>
<td>HRT 450</td>
<td>50.000</td>
</tr>
<tr>
<td>TRT</td>
<td>270.000</td>
</tr>
</tbody>
</table>

96-0315 Rev F
June 2009
Circle Division

Circle division is selected with a **G98** (or **G85** for TRT units). The **L** defines how many equal parts a circle is divided into. After the **L** count steps, the unit will be in the same position it started from. Circle division is only available in the circular modes (i.e., Parameter 12 = 0, 5, or 6). **G85** selects division of an angle other than 360° for dual-axis units. Dual axis units must have one of the axes in non-zero stop mode to move, and the other axis must have a zero stop.

Auto Continue Control

If Parameter 10 is set to 2, the control will execute the entire program, and stop when the G99 is reached. The program can be stopped by pressing and holding Cycle Start until the current step is finished. To restart the program press Cycle Start again.

Inserting a Line

A new step is inserted into a program by pressing and holding Cycle Start for three seconds while in Program mode. This will move the current step, and all following step, down and a new step inserted with default values. Note that subroutine jumps must be renumbered.

Deleting a Line

A step is deleted from a program by pressing and holding the Zero Return button for three seconds while in Program mode. It will cause all the following steps to move up by one. Note that subroutine jumps must be renumbered.

Default Values

For all rotary units the default values are:

- 000.000 (step size zero – **Single axis**)
- A 000.000 (step size zero – **Dual axis**)
- B 000.000
- F (maximum feed rate defined by Parameters)
- L 001
- G 91 (incremental)

If an entry is cleared or set to 0 by the operator, the value will be changed, by the control, to the default value. All entries are stored when selecting the next display function, step number, or returning to Run mode.
SELECTING A STORED PROGRAM

The program is selected by pressing the minus (-) button while a G code is displayed in Program mode. This changes the display to: Prog n. Press a number to select a new program, and then press the Mode button to return to Run mode, or the Cycle Start button to continue with Program mode.

CLEARING A PROGRAM

To clear a program (not including parameters), go to Program mode (press the Mode button if display is not blinking) and press and hold the Clear button for three seconds. The display will cycle through all 99 steps and set all but the first to G99. The first step is set to G91, step size 0, maximum feed rate, and a loop count of 1.

OPERATING HINTS

1. To select another display, while in the Run mode, press the Display Scan button.

2. The program can be started at any step using the Up/Down scan keys.

3. Make sure the mill has the same number of M functions programmed as steps in the rotary control.

4. Do not program two M functions, one directly after another, in the mill to index the rotary control. This may cause a timing fault in the mill. Use a dwell of 1/4 second between them.

SIMULTANEOUS ROTATION AND MILLING

G94 is used to perform simultaneous milling. The relay is pulsed at the beginning of the step so that the NC mill will go to the next block. The rotary control then executes the L steps without waiting for start commands. Normally the L count on the G94 is set to 1 and that step is followed by a step which is run simultaneous with an NC mill.

SPIRAL MILLING (HRT & HA5C)

Spiral milling is coordinated movement of the rotary unit and the mill axis. Simultaneous rotation and milling allows machining of cams, spiral, and angular cuts. Use a G94 in the control and add rotation and feed rate. The control executes G94 (signals mill to proceed) and the following step(s) as one. If more than one step is required, use an L command. In order to spiral mill, mill feedrate must be calculated so rotary unit and mills axis stop at the same time.

In order to calculate the mill feed rate, the following information needs to be addressed:

1. The angular rotation of the spindle (this is described in the part drawing).
2. A feed rate for the spindle (arbitrarily select a reasonable one, for example, five degrees (5°) per second).
3. The distance you wish to travel on X-axis (see part drawing).

For example, to mill a spiral that is 72° of rotation and move 1.500" on the X-axis at the same time:
1. Compute the amount of time it will take the rotary unit to rotate through the angle

 \[
 \frac{\text{# of degrees}}{\text{(feed rate of spindle)}} = \text{time to index}
 \]

 \[
 72 \text{ degrees} / 5^\circ \text{ per sec} = 14.40 \text{ seconds for unit to rotate.}
 \]

2. Compute the mill feed rate that will move the X distance in 14.40 seconds
(length to travel in inches/# of seconds of rotation) x 60 seconds = mill feed rate in inches per minute.

\[
1.500 \text{ inches} / 14.4 \text{ seconds} = 0.1042 \text{ inches per second} \times 60 = 6.25 \text{ inches per minute.}
\]

Therefore, if the indexer is set to move 72° at a feed rate of 5° per second you will have to program the mill to travel 1.500 inches with a feed rate of 6.25 inches per minute for the spiral to be generated. The program for the Haas control would be as follows:

<table>
<thead>
<tr>
<th>STEP</th>
<th>STEP SIZE</th>
<th>FEED RATE</th>
<th>LOOP COUNT</th>
<th>G CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>0.000</td>
<td>1</td>
<td>[94]</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
<td>0.000</td>
<td>1</td>
<td>[91]</td>
</tr>
<tr>
<td>02</td>
<td>[72000]</td>
<td>[5.000]</td>
<td>1</td>
<td>[88]</td>
</tr>
<tr>
<td>03</td>
<td>0</td>
<td>0.000</td>
<td>1</td>
<td>[99]</td>
</tr>
</tbody>
</table>

The mill program would look like this:

N1 G00 G91 (rapid in incremental mode)
N2 G01 F10. Z-1.0 (feed down in Z-axis)
N3 M21 (to start indexing program above at step one)
N4 X-1.5 F6.25 (index head and mill move at same time here)
N5 G00 Z1.0 (rapid back in Z-axis)
N6 M21 (return indexer Home at step three)
N7 M30

POSSIBLE TIMING ISSUES

When the unit executes a G94, a 250 millisecond delay is required before starting the next step. This may cause the mill axis to move before the table rotates, leaving a flat spot in the cut. If this is a problem, add a 0 to 250 milliseconds dwell (G04) in the mill, after the M function, to prevent mill axis movement. By adding a dwell, the rotary unit and the mill should start moving at the same time. It may be necessary to alter the feed rate on the mill to avoid timing issues at the end of the spiral. Do not adjust the feed rate on the rotary control; the mill has a finer feed rate adjustment. If the undercut appears to be in the X-axis direction, increase (0.1) the mill
feed rate. If the undercut appears in the radial direction, decrease the mill feed rate.

If timing is off by several seconds such that the mill completes its movement before the indexer, and there are several spiral moves one right after another (as in retracing a spiral cut) the mill may stop. The reason is the mill sends a cycle start signal (for next cut) to the rotary control before it has completed its first move, but the rotary control will not accept another start command until it finishes the first. Check timing calculations when doing multiple moves. A way to verify this is to Single Block the control, allowing five seconds between steps. If the program runs successfully in Single Block and not in the continuous mode, the timing is off.

Programming Examples

Single Axis Programming

Example #1

Index the platter 90°.

1. Turn Power switch on (located on the rear panel).
2. Push the Cycle Start button.
3. Push the Zero Return button.
4. Push the Mode button and release. Displays will blink.
5. Push and hold the Clear button for five seconds. “01 000.000” displayed.
6. Enter 90000
8. Push Cycle Start to index.

Example #2

Index the platter 90° (Example #1, Steps 1-8), rotate at five degrees/sec (F5) in the opposite direction for 10.25 degrees, and then return home.

10. Push the Down Arrow once. You should be on Step 2.
11. Enter 91 on the key pad. Use Clear to erase mistakes.
12. Push the Display Scan button once.
13. Enter -10250 on the keypad.
14. Push the Down arrow once. The control is now on the feed display.
15. Enter 5000.
16. Push the down arrow once. The control is now on step 3.
17. Enter 88.
18. Push the up arrow four times. The control is now on step 1.
19. Push the Mode button. The display will become steady (not flashing).
20. Push the Cycle Start button three times. The unit should index 90 degrees (90°), slow feed in the opposite direction for 10.25 degrees (10.25°), then return home.
The following examples show the program as you would enter it into the control. We will assume each time that you have cleared out the memory. The bold-face type indicates data that to be entered into the controller.

Example #3
Drill a four-hole pattern, and then a five-hole pattern on the same part.

<table>
<thead>
<tr>
<th>Step</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
<th>G Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>90.000</td>
<td>270.000 (HA5C)</td>
<td>4</td>
<td>91</td>
</tr>
<tr>
<td>02</td>
<td>72.000</td>
<td>270.000 (HA5C)</td>
<td>5</td>
<td>91</td>
</tr>
<tr>
<td>03</td>
<td>0</td>
<td>270.000 (HA5C)</td>
<td>1</td>
<td>99</td>
</tr>
</tbody>
</table>

Example #3 could have also been done using Circle Division.

<table>
<thead>
<tr>
<th>Step</th>
<th>Feed Rate</th>
<th>Loop Count</th>
<th>G Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>270.000 (HA5C)</td>
<td>4</td>
<td>98</td>
</tr>
<tr>
<td>02</td>
<td>270.000 (HA5C)</td>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>03</td>
<td>270.000 (HA5C)</td>
<td>1</td>
<td>99</td>
</tr>
</tbody>
</table>

Example #4
Index 90.12°, start a seven-hole bolt pattern, and then return to the zero position.

<table>
<thead>
<tr>
<th>Step</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
<th>G Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>90.120</td>
<td>270.000</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>02</td>
<td>0</td>
<td>270.000</td>
<td>7</td>
<td>98</td>
</tr>
<tr>
<td>03</td>
<td>0</td>
<td>270.000</td>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>04</td>
<td>0</td>
<td>270.000</td>
<td>1</td>
<td>99</td>
</tr>
</tbody>
</table>

Example #5
Index 90°, slow feed for 15°, repeat this pattern three times, and return home.

<table>
<thead>
<tr>
<th>Step</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
<th>G Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>90.000</td>
<td>270.000</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>02</td>
<td>15.000</td>
<td>25.000</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>03</td>
<td>90.000</td>
<td>270.000</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>04</td>
<td>15.000</td>
<td>25.000</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>05</td>
<td>90.000</td>
<td>270.000</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>06</td>
<td>15.000</td>
<td>25.000</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>07</td>
<td>0</td>
<td>270.000</td>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>08</td>
<td>0</td>
<td>270.000</td>
<td>1</td>
<td>99</td>
</tr>
</tbody>
</table>

This is the same program (Example #5) using subroutines.
Example #5, with subroutines, explanation:
Step #1 tells the control to jump to Step #4. The control does steps #4 and #5 three times (loop count “3” in step 1), Step #6 marks the end of the subroutine. After finishing the subroutine, the control jumps back to the step following the “G 96” call (in this case, Step #2). Since Step #3 is not part of a subroutine, it marks the end of the program and will return the control to Step #1.

Using subroutines in Example #5 saves two program lines. However, to repeat the pattern eight times, a subroutine would save twelve lines, and only the loop count in Step #1 would change to increase the number of times to repeat the pattern.

As an aid in programming subroutines, think of the subroutine as a separate program. Program the control using “G96” when you want to “call” the subroutine. Complete the program with an End 95 code. Enter the subroutine program and note the step it begins with. Enter that step in the LOC area of the G96 line.

Example #6
Index 15, 20, 25, 30 degrees, in sequence, four times and then drill a five-hole bolt pattern.

<table>
<thead>
<tr>
<th>Step</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
<th>G Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>0</td>
<td>Loc 4</td>
<td>4</td>
<td>96</td>
</tr>
<tr>
<td>02</td>
<td>0</td>
<td>270.000 (HA5C)</td>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>03</td>
<td>0</td>
<td>270.000 (HA5C)</td>
<td>1</td>
<td>95</td>
</tr>
</tbody>
</table>

Main program above Steps 01-03 - Subroutine steps 04-08
<table>
<thead>
<tr>
<th>Step</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
<th>G Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>15.00</td>
<td>270.000 (HA5C)</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>05</td>
<td>20.00</td>
<td>270.000 (HA5C)</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>06</td>
<td>25.00</td>
<td>270.000 (HA5C)</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>07</td>
<td>30.00</td>
<td>270.000 (HA5C)</td>
<td>1</td>
<td>91</td>
</tr>
<tr>
<td>08</td>
<td>0</td>
<td>270.000 (HA5C)</td>
<td>1</td>
<td>99</td>
</tr>
</tbody>
</table>

Dual-Axis Programming

Example #1
Index the rotary table, not the tilt-axis, 90°.
1. Turn Power switch on.
2. Push the Cycle Start switch.
3. Push the Zero Return switch.
4. Push the Mode button and release. Display will blink.
5. Push and hold Clear button for five seconds. “G 91” displayed.
6. Push the Display Scan button until M:A is displayed (the “Steps” display).
7. Enter 90000. Use the Clear button to fix a mistake
Example #2
Index the rotary axis 90° (previous steps 1-9) and then index the tilt axis 45°.

10. Push the Mode button. Display will blink.
11. Push the Down Arrow once. This will move the control to step 2.
12. Enter 91 on the key pad.
13. Push the Display Scan button until M:B is displayed.
14. Enter 45000 on the key pad.
15. Push the Up Arrow button once. Move the control to step 1.
17. Push the Cycle Start switch; the table moves to 90°. Push Cycle Start again and the tilt-axis moves to 45°.

Following examples show the program as it is entered into the control. It is assumed that memory is cleared.

Example #3
Tilt the rotary table 30°, then drill a four-hole pattern, and then drill a five-hole pattern on the same part.

<table>
<thead>
<tr>
<th>Step</th>
<th>Mode (M:)</th>
<th>G Code</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>A</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>30.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>A</td>
<td>91</td>
<td>90.000</td>
<td>080.000</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>000.000</td>
<td>000.000</td>
<td>4</td>
</tr>
<tr>
<td>03</td>
<td>A</td>
<td>91</td>
<td>72.000</td>
<td>080.000</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>5</td>
</tr>
<tr>
<td>04</td>
<td>A</td>
<td>99</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>99</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
</tbody>
</table>

Example #4
Tilt table 37.9°, index rotary table 90.12°, start a seven-hole bolt pattern, and then return to the zero position.
<table>
<thead>
<tr>
<th>Step</th>
<th>Mode (M:)</th>
<th>G Code</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>A</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>37.900</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>A</td>
<td>91</td>
<td>90.120</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>03</td>
<td>A</td>
<td>98</td>
<td>000.000</td>
<td>080.000</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>98</td>
<td>000.000</td>
<td>080.000</td>
<td>7</td>
</tr>
<tr>
<td>04</td>
<td>A</td>
<td>88</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>88</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>05</td>
<td>A</td>
<td>99</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>99</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
</tbody>
</table>

Example #5

Tilt the table 22°, index it 90°, and slow feed 15°, repeating the pattern three times and then return home.
This is the same program (Example #5) using subroutines.

Example #5, with Subroutines, Explanation:
Step #2 tells the control to jump to step #5. The control does steps #5 and #6 three times, step #7 marks the end of the subroutine. After finishing the subroutine the control jumps back to the step following the “G 96” call or step #3. Since step #4 is not part of a subroutine, it marks the end of program and will return the control to step #3.

The difference in using subroutines in example #5 saves two program lines. However, to repeat the pattern eight times would save twelve program lines, and only the loop count in step #2 would change to increase the number of times to repeat the pattern.
As an aid in programming subroutines, think of the subroutine as a separate program. Program the control using “G 96” when you want to invoke the previously written subroutine. When finished, complete the program with an End 95 code. Now enter your subroutine and note the step it begins with; enter that step in the “Loc” register of the “G 96” call.

Example #6

Tilt the table -10°, then index 15, 20, 25, 30 degrees in sequence four times and then drill a five-hole bolt pattern.

<table>
<thead>
<tr>
<th>Step</th>
<th>Mode (M:)</th>
<th>G Code</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>A</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>-10.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>01</td>
<td>A</td>
<td>96</td>
<td>000.000</td>
<td>Loc 4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>96</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>02</td>
<td>A</td>
<td>98</td>
<td>000.000</td>
<td>080.000</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>98</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>03</td>
<td>A</td>
<td>95</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>95</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
</tbody>
</table>

Main Program Seps 01-03 – Subroutine Steps 04-08

<table>
<thead>
<tr>
<th>Step</th>
<th>Mode (M:)</th>
<th>G Code</th>
<th>Step Size</th>
<th>Feed Rate</th>
<th>Loop Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>A</td>
<td>91</td>
<td>15.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>05</td>
<td>A</td>
<td>91</td>
<td>20.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>06</td>
<td>A</td>
<td>91</td>
<td>25.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>07</td>
<td>A</td>
<td>91</td>
<td>30.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>91</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td>08</td>
<td>A</td>
<td>99</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>99</td>
<td>000.000</td>
<td>080.000</td>
<td>1</td>
</tr>
</tbody>
</table>

Programmable Parameters

There are parameters associated with each axis. These parameters are used to change the way the control and rotary unit operates. A battery, in the control, keeps the parameters (and the stored program) saved for up to eight years. To change a parameter, go to the Program mode by pressing the Mode button. Then press the up arrow and hold it at step 1 for three seconds. After three seconds, the display will change to the parameter entry mode.
Use the up and down arrow keys to scroll through the parameters. The right arrow key is used to alternate between parameters for the A and B axes for TRT units. Pressing the up/down arrow, right arrow, or Mode button will cause an entered parameter to be stored.

Some of the parameters are protected from being changed by the user, to avoid unstable or unsafe operation. If one of these parameters needs to be changed, call your dealer. The Emergency Stop button, must be pressed in before a parameter value can be changed.

To exit from parameter entry mode, press the Mode button to go to Run mode or push the down arrow key to return to Step 1.

Gear Compensation

The control has the ability to store a compensation table to correct for small errors in the worm gear. The gear compensation tables are part of the parameters. While parameters are displayed, press the right arrow button to select the gear compensation tables; there is both a plus (+) direction table and a minus (-) direction table. Use the right arrow button to display the + or - table. The gear compensation data is displayed as:

- $gP \text{ Pnnn cc}$ for plus table
- $G- \text{ Pnnn cc}$ for minus table

The nnn value is the machine position in degrees and the cc is the compensation value in encoder steps. There is a table entry every two degrees starting at 001 and going to 359. If your control has non-zero values in the gear compensation tables, it is recommended that you do not change them.

When the gear compensation tables are displayed, the up and down arrow button will select the next three consecutive 2° entry. Use the minus (-) and numeric buttons to enter a new value. The right button will select the six compensation values to edit.

Warning

If the Emergency button is not pressed, when changes are made, the unit will move by the adjustment amount.

Clearing of parameters will set all of the gear compensation tables to zero. To exit the gear compensation display, press the Mode button; this returns the control to RUN mode.

When a table/indexer is using gear compensation, the values in Parameter 11, and/or Parameter 57, must be set to “0”.
DUAL-AXIS TRAVEL LIMITS

Travel limits are defined by Parameters 13 and 14, for the A-axis and Parameters 59 and 60 for the B-axis. Changing these parameters will allow the tilt axis to rotate beyond the normal limits and may twist and damage the cables and air supply line.

Tangled cables should be resolved by turning off the control, disconnecting the cables and untwisting them manually.

Call your dealer before adjusting these parameters.

PARAMETER LIST

The B-axis of a dual axis unit is shown in parenthesis ()

Parameter 1: CNC Interface Relay Control, range 0 to 2
 0 : relay active during indexer motion
 1 : relay pulsed for ¼ second at end of motion
 2 : no relay action

Parameter 2: CNC Interface Relay Polarity & Aux. Relay Enable, range 0 to 3
 0: normally open
 +1: normally closed cycle finish relay
 +2: to pulse optional second relay at end of program.

Parameter 3 (49): Servo Loop Proportional Gain, range 0 to 255 Protected!
Servo loop proportional gain increases current in proportion to the proximity to the target position. The farther from the target, the greater the current up to the maximum value in Parameter 40. A mechanical analogy is a spring that will oscillate past the target unless dampened by the Derivative gain.

Parameter 4 (50): Servo Loop Derivative Gain, range 0 to 99999 Protected!
Servo loop derivative gain resists motion effectively braking oscillations. This parameter is increased in proportion to the p gain.

Parameter 5: Double Remote Trigger Option, range 0 to 1
When this parameter is set to 1, the remote start must be triggered twice to activate the control. When it is zero, each activation of the remote input will trigger a step.

Parameter 6: Disable Front Panel Start, range 0 to 1
When set to 1, the front panel Start and Home buttons will not work.

Parameter 7: Memory Protection, range 0 to 1
When set to 1, no changes can be made to the stored program. Does not prevent changing parameters.

Parameter 8: Disable Remote Start range 0 to 1
The remote start input will not work.

Parameter 9 (55): Encoder Steps Per Programmed Unit, range 0 to 99999
Defines the number of encoder steps required to complete one full unit (degree, inch, millimeter, etc.)
Example 1: An HA5C with a 2000 pulse per revolution encoder (four pulses per line, or quadrature) and a 60:1 gear ratio produces: \(\frac{8000 \times 60}{360} = 1333.333 \) encoder steps. Since 1333.333 is not a whole integer, it must be multiplied by some number to clear the decimal point. Use Parameter 20 to accomplish this in the above case. Set Parameter 20 to 3, therefore: \(1333.333 \times 3 = 4000 \) (entered in Parameter 9)

Example 2: A HRT with 8192 line encoder (with quadrature), a 90:1 gear ratio and a final drive of 3:1 would produce: \(\frac{32768 \times (90 \times 3)}{360} = 24576 \) steps for 1 degree of motion.

Parameter 10: Auto Continue Control, range 0 to 3
0: Stop after each step
1: Continue all looped steps and stop before next step
2: Continue all programs until end code 99 or 95
3: Repeat all steps until stopped manually

Parameter 11 (57): Reverse Direction Option, range 0 to 3 Protected!
This parameter consists of two flags used to reverse the direction of the motor drive and encoder. Start with a zero and add the number shown for each of the following selected options:
+1: Reverse the direction of positive motor motion.
+2: Reverse the polarity of motor power.
Changing both flags to the opposite state will reverse the direction of motor motion. Parameter 11 Cannot be changed on TR or TRT units.

Parameter 12 (58): Display Units and Precision (decimal location), range 0 to 6. Must be set to 1, 2, 3, and 4 if travel limits are to be used (including circular motion with travel limits).
0: degrees and minutes (circular) Use this setting to program four digits of degrees up to 9999 and two digits of minutes.
1: inches to 1/10 (linear)
2: inches to 1/100 (linear)
3: inches to 1/1000 (linear)
4: inches to 1/10000 (linear)
5: degrees to 1/100 (circular) Use this setting to program four digits of degrees up to 9999 and two digits of fractional degrees to 1/100
6: degrees to 1/1000 (circular) Use this setting to program three digits of degrees up to 999 and three digits of fractional degrees to 1/1000

Parameter 13 (59): Maximum Positive Travel, range 0 to 99999
This is the positive travel limit in units*10 (entered value loses last digit). It applies only to linear motion (i.e., Parameter 12 = 1, 2, 3, or 4). If it is set to 1000, positive travel will be limited to 100 inches. The entered value is also affected by the gear ratio divider (parameter 20).
Parameter 14 (60): Maximum Negative Travel, range 0 to 99999
This is the negative travel limit in units*10 (entered value loses last digit). It applies
only to linear motion (i.e., Parameter 12 = 1, 2, 3, or 4). For examples see Parameter 13.

Parameter 15 (61): Backlash Amount, range 0 to 99
This parameter is used to compensate electronically for mechanical gear backlash.
It is in units of encoder steps. Note that this parameter cannot correct mechanical
backlash.

Parameter 16: Auto Continue Dwell, range 0 to 99
This parameter causes a pause at the end of a step when the automatic continuation option is used. The delay is in multiples of 1/10 second. Thus, a value of 13 will give 1.3 seconds of delay. Used primarily for continuous duty, allowing for motor cool down time and longer motor life.

Parameter 17 (63): Servo Loop Integral Gain, range 0 to 255 Protected!
If integral is to be disabled during deceleration (for less overshoot), set Parameter 24 accordingly. Integral gain provides larger increases of current to achieve target. This parameter, set too high, often causes a hum.

Parameter 18 (64): Acceleration, range 0 to 999999 x 10 Protected!
Defines how fast the motor is accelerated up to the desired speed. The value used is (Par 18)*10 in encoder steps/second/second. The highest acceleration is thus 655350 steps per second per second for TRT units. It must be greater than or equal to twice Parameter 19, usually 2x. The entered value = the desired value/Parameter 20 if a gear ratio divider is used. a lower value results in gentler acceleration.

Parameter 19 (65): Maximum Speed, range 0 to 999999 x 10
Defines the maximum speed (RPM of motor). The value used is (Par 19)*10 in encoder steps/second. The highest speed is thus 250000 steps per second for TRT units. It must be less than or equal to Parameter 18. If this parameter exceeds Parameter 36, only the smaller number is used. See Parameter 36 also. The entered value = the desired value/Parameter 20 if a gear ratio divider is used. Lowering this value results in reduced maximum speed (maximum motor RPM).

Standard Formula: degrees (inches) per sec X ratio (Parameter 9)/100 = entered value in Parameter 19.

Formula with Gear Ratio Divider: (Parameter 20): degrees (inches) per second X ratio (Parameter 9)/[ratio divider (Parameter 20) x 100] = entered value in Parameter 19.

Parameter 20 (66): Gear Ratio Divider, range 0 to 100 Protected!
Selects non-integer gear ratios for Parameter 9. If Parameter 20 is set to 2 or more, Parameter 9 is divided by Parameter 20 before it is used. If this parameter is set to 0 or 1, no change is made to Parameter 9.

Example 1: Parameter 9 = 2000 and Parameter 20 = 3, the number of steps per unit will be 2000/3 = 666.667, thus compensating for fractional gear ratios.
Example 2 (with a gear ratio divider Parameter 20 needed): 32768 encoder pulses per revolution \(\times 72:1 \) gear ratio \(\times 2:1 \) belt ratio/360 degrees per revolution = 13107.2. Since 13107.2 is non-integer we require a ratio divider (Parameter 20) set to 5 then: 13107.2 ratio = 65536 (Parameter 9) encoder steps/5 (Parameter 20) ratio divider.

Parameter 21: RS-232 Interface Axis Select, range 0 to 9
When zero, no remote RS-232 functions are available. When it is 1 to 9, that number is used to define the axis code for this controller. U is 1, V is 2, W is 3, X is 4, Y is 5, and Z is 6. 7 through 9 are other ASCII character codes.

Parameter 22 (68): Maximum Allowed Servo Loop Error, range 0 to 99999 Protected!
When zero, no maximum error limit test is applied to the servo. When it is non-zero, that number is the maximum allowed error before the servo loop is turned off and an alarm generated. This auto shut-off results in a display of: Ser Err

Parameter 23 (69): Fuse Level in %, range 0 to 100 Protected!
Defines a fuse level for the servo control loop. The value is a percentage of maximum power level available to the controller. It has an exponential time constant of about 30 seconds. If exactly the set level is output by the driver continuously, the servo will shut off after 30 seconds. Twice the set level will shut the servo off in about 15 seconds. This parameter is factory set and is usually set from 25% to 35% depending on the product. This auto shut-off results in a display of: Hi LoAd.

Warning!
Changes from Haas recommended values will damage the motor.

Parameter 24 (70): General Purpose Flags, range 0 to 4095 Protected!
Consists of five individual flags for controlling servo functions Start with a zero and add the number shown for each of the following selected options:

+1: Interpret Parameter 9 as twice entered value.
+2: Disable integral while decelerating (see Parameter 17)
+4: Disable integral when brake is engaged (see Parameter 17)
+8: Protection of parameters enabled (see Parameter 30)
+16: Serial interface disabled
+32: Start-up “Haas” message disabled
+64: Lower lag in compensation
+64: Elapsed time display allowed
+128: Disable Z channel encoder test
+256: Normally closed overtemp sensor
+512: Disable cable test
+1024: Disable rotary scale encoder cable test (HRT210SC only)
+2048: Disable rotary scale encoder Z test (HRT210SC only)
Parameter 25 (71): Brake Release Time, range 0 to 19 Protected!
If zero, the brake is not activated (i.e., always engaged); otherwise this is the delay
time to release the air before the motor is started in motion. It is in units of 1/10
second. A 5 will thus delay for 5/10 second. (Not used in HA5C, and defaulted to 0.)

Parameter 26: RS-232 Speed, range 0 to 8
Selects data rates on the RS-232 interface. The HRT & HA5C parameter values
and rates are:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>300</td>
<td>600</td>
<td>1200</td>
<td>2400</td>
</tr>
<tr>
<td>5: 4800</td>
<td>6: 7200</td>
<td>7: 9600</td>
<td>8: 19200</td>
<td></td>
</tr>
</tbody>
</table>

The TRT always has this parameter set to 5, at a data rate of 4800.

Parameter 27 (73): Automatic Home Control, range 0 to 512 Protected!
All Haas Indexers use a home switch used in conjunction with the Z pulse on the
motor encoder (one for each revolution of the motor) for repeatability. The home
switch consists of a magnet (Haas P/N 69-18101) and proximity switch
(Haas P/N 36-3002), which is of the magnetically sensitive transistor type. When the
control is shut down and restarted, it will require the user to press the
“Zero Return” button. The motor then operates slowly in a clockwise direction (as
viewed from the platter of a rotary table) until the proximity switch is magnetically
tripped, then backs up to the first Z pulse. (See parameter code options in
parameter section for actual options.) Note that to reverse direction when seeking
a home switch (if it currently moves away from the home switch during the home
sequence), add 256 to the value in Parameter 27.

This parameter is used to customize the home control function of servo.

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>no automatic home functions available (no home switch)</td>
<td>only table zero position switch available</td>
<td>only Z channel home available</td>
<td>home on both Z channel and table zero switch</td>
<td>home if inverted Z (determined by encoder used)</td>
<td>home to zero position in negative direction</td>
<td>home to zero position in positive direction</td>
<td>home to zero position in shortest direction</td>
<td>auto servo on at power on</td>
</tr>
<tr>
<td>+64: auto search for home at power on (have “auto servo on at power up” selected)</td>
<td>+128: for inverted Home switch (determined by home switch used)</td>
<td>+256: search for home in positive direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter 28 (74): Encoder Steps Per Motor Revolution, range 0 to 999999 Protected!
Used with the Z channel option to check the encoder accuracy. If Parameter 27 is 2
or 3, it is used to check that the correct number of encoder steps are received per
revolution.

Parameter 29 (75) UNUSED
Parameter 30: Protection, range 0 to 65535
Protects some of the other parameters. Every time the controller is turned on, this parameter will have a new, random, value. If protection is selected (Parameter 24), the protected parameters cannot be changed until this parameter is set to a different value that is a function of the initial random value.

Parameter 31: CNC Relay Hold Time, range 0 to 9
 Specifies the amount of time the CNC interface relay is held active at the end of a step. If zero, the relay time is ¼ second. All other values give the time in multiples of 0.1 second.

Parameter 32 (78): Delay Time for Engaging Brake, range 0 to 19 Protected!
Sets the amount of time delay between the end of a motion and engaging the air brake. It is a unit of 1/10 seconds. A “4” will thus delay for 4/10 second.

Parameter 33: X-on/X-off Enable, range 0 or 1
 Enables the sending of the X-on and X-off codes via the RS-232 interface. If your computer needs these, this parameter should be set to 1. Otherwise, only the RTS and CTS lines can be used to synchronize communication. (See section on RS-232 Interface.)

Parameter 34 (80): Belt Stretch Adjustment, range 0 to 399 Protected!
Corrects for stretching in a belt if one is used to couple the motor to the load being moved. It is a count of the number of steps of motion that are added to the motor position while it is moving. It is always applied in the same direction as the motion. Thus, when motion stops, the motor will snap backward to take the load off the belt. This parameter is not used in an HA5C and is defaulted to 0.

Parameter 35 (81): Dead Zone Compensation, range 0 to 19 Protected!
Compensates for the dead zone in the driver electronics. It is normally set to 0 or 1.

Parameter 36 (82): Maximum Speed, range 0 to 999999 x 100 Protected!
Defines the maximum feed rate. The value used is (Par 36)*10 in encoder steps/second. The highest speed is thus 250000 steps per second for TRT units and 1,000,000 steps per second for HRT & HA5C units. It must be less than or equal to Parameter 18. If this parameter exceeds Parameter 19, only the smaller number is used. See Parameter 19 also.

Parameter 37 (83): Encoder Test Window size, range 0 to 999
Defines the tolerance window for the Z channel encoder test. This much error is allowed in the difference between the actual encoder position and the ideal value when the Z channel is encountered.

Parameter 38 (84): Loop Second Dif Gain, range 0 to 9999
Servo loop second differential gain.

Parameter 39 (85): Phase Offset, range 0 to 9
Offset of encoder Z-pulse to zero degree of phasing.
Parameter 40 (86): Max Current, range 0 to 2047
Maximum peak current output to the motor. Units DAC bits. Warning! Changes to this parameter from Haas recommended values will damage the motor.

Parameter 41: Unit Selection
- 0 is no unit shown
- 1 Degrees (shown as "deg")
- 2 Inches ("in")
- 3 Centimeters (cm)
- 4 Millimeters (mm)

Parameter 42 (88): Mtr Current Coefficnt, range 0 to 3
Filter coefficient for the output current.
- 0 is 0% of 65536
- 1 is 50% of 65536 or 0x8000
- 2 is 75% of 65536 or 0xC000
- 3 is 7/8 of 65536 or 0xE000

Parameter 43 (89): Elct Rev Per Mec Rev, range 1 to 9
Number of electrical revolutions of the motor per one mechanical revolution.

Parameter 44 (90): Exp Accel Time Const, range 0 to 999
Exponential acceleration time constant. Units are 1/10000 seconds.

Parameter 45 (91): Grid Offset, range 0 to 99999
The distance between the home switch and the final stopped motor position after homing, is added by this grid offset amount. It is modulus of Parameter 28, which means that if Parameter 45 = 32769 and Parameter 28 = 32768, then it is interpreted as 1.

Parameter 46: Beeper Duration, range 0 to 999
Length of beeper tone in milliseconds. 0-35 no tone. Default 150 milliseconds.

Parameter 47: HRT320FB Zero Offset, range 0 to 9999 For HRT320FB.
Angular value to offset zero position. Units are 1/1000 of a degree.

Parameter 48: HRT320FB Increment, range 0 to 1000 HRT320FB only
Angular value to control indexer increments. Units are 1/1000 of a degree

Parameter 49: Scale Steps Per Deg, range 0 to 99999 x 100 HRT210SC only
Converts the rotary scale steps into degrees to access values in the rotary compensation table.

Parameter 50: UNUSED

Parameter 51: Rotary Scale General Purpose Flags, range 0 to 63 HRT210SC only.
Consists of six individual flags for controlling the rotary encoder functions.
- +1 - enable the use of the rotary scale
- +2 - invert the direction of the rotary scale
+4 - negate the direction of the rotary scale compensation
+8 - use motor Z pulse when zeroing
+16 - display the rotary scale in steps and in HEX format
+32 - disable rotary scale compensation during brake.

Parameter 52: Dead Zone (Not used) HRT210SC only

Parameter 53: Rotary Multiplier, range 0 to 9999 HRT210SC only
Increases current in proportion to the proximity to the absolute rotary scale position. The farther from the absolute rotary scale target, the greater the current up to the maximum compensation value in Parameter 56. Alarm will be generated if exceeded, see Parameter 56.

Parameter 54: Scale Range, range 0 to 99 HRT210SC only
Selects non-integer ratios for Parameter 49. If Parameter 5 is set to 2 or more, Parameter 49 is divided by Parameter 54 before it is used. If this parameter is set to 0 or 1, no change is made to Parameter 49.

Parameter 55: Scale Steps Per Rev, range 0 to 999999 x 100 HRT210SC only
Converts the rotary scale steps into encoder steps. It is also used with the Z option to check the rotary scale encoder accuracy.

Parameter 56: Scale max Compensation, range 0 to 999999 HRT210SC only
The maximum number of encoder steps that the scale could compensate before alarm “rLS Err” occurs.

Troubleshooting

Troubleshooting a Working Interface on a CNC

If there are problems, try to isolate the problem by checking the Haas rotary control and the mill separately. There are only two signals and each one can be checked separately from the other. If the rotary unit stops indexing because of an interface problem, follow these simple checks:

1. Check The HAAS Control Remote Input Alone
Disconnect the remote cable from the back of the controller. Set the control to index a single step of 90°. Connect a continuity tester or a voltmeter (a digital meter may not be fast enough to sample the brief pulse) set for low ohms across pins 1 and 2; they are marked on the rear of the control as Finish Signal. It must show an open circuit, otherwise check relay Parameters #1 (should be 1) and #2 (should be 0). The relay must show an open circuit, with the control turned off, otherwise the relay is defective. Use a jumper wire to short pins 3 and 4 together, (They are marked on the rear of the control as “Cycle Start”). The unit must index, and at the end of the index, the voltmeter should deflect briefly toward low ohms or continuity. If this works as described, the problem is NOT in the rotary control but may be the interface cable or mill.
2. Check The CNC Cable Interface Alone

Check the signals from the CNC using your voltmeter. Note that the pin orientation is reversed. Execute an M function from the mill to rotate. The mill Cycle Start light should come on and stay on. Use the meter and check continuity across the Cycle Start pins (pins 3 and 4). Try not to short the test leads and pins against the shield of the male plug.

NOTE: Some mills may have a +12 to +24 volt signal on pin 4 to activate a rotary unit. Check if there is voltage between pin 4 and the ground, if the continuity test fails, this is also a valid Cycle Start signal. If there is voltage present on Pin 4, a Haas interface box must be used (Part # IB). Contact your dealer if there are questions on how to use the interface box.

To check the cycle finish signal, use a voltmeter test probe to short together pins 1 and 2 on the mill cable. The Cycle Start light on the mill should turn off.

If the tests (1 and 2) pass, there is a valid signals coming from the mill.

3. Check The HAAS Control And The Mill Together

Reset the mill by pressing the Reset button or turning it off. Connect the remote cable, then turn both the rotary unit and mill on. Once connected the rotary unit should remain idle. If the rotary unit moves, the Cycle Start signal from the mill is shorted. If it remains idle, execute or MDI an M function from the mill to index. Do not index from the program unless using single-block. If the rotary unit does not move, the mill is not outputting a signal or there is a break in the cable.

If the rotary unit indexes properly, ensure that the mill Cycle Start light goes out at the end of index. If the light does not go out, the Cycle Finish signal is not returning to the mill. This could be and open wire in the remote cable or a problem in cables that connect to the CNC.

If the unit works only in single block, but not in the Run mode, there may be a timing problem involving two M functions, or a simultaneous milling problem. Review the section on simultaneous milling. If there are two M functions, separate them with a dwell of ¼ second.

B on A Axis Offset (Tilting Rotary Products)

This procedure determines the distance between the plane of the B-axis platter and the A-axis centerline on tilting rotary products. The offset is required by some CAM software applications.
1. Rotate the A-axis until the B-axis is vertical. Mount a dial indicator on the machine spindle (or other surface independent of table motion) and indicate the platter face. Set the indicator to zero.

2. Set the Y-axis operator position to zero (select the position and press ORIGIN).

4. The platter face must now be indicated from the same direction as the first indication. Place a 1-2-3 block against the platter face and indicate the face of the block that rests against the platter face. Move the Y-axis to meet the block with the indicator tip. Reset the indicator to zero.

5. Read the new Y-axis position. Divide this value by 2 to determine the B on A axis offset.

1. Indicate Face

3. Rotate A-axis 180°

B on A Axis Illustrated Procedure
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable Causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit is turned on but the power switch is not illuminated.</td>
<td>Control is not receiving power.</td>
<td>Check power cord, fuse, and AC supply.</td>
</tr>
<tr>
<td>Front panel Start and Zero Return buttons do not work.</td>
<td>In PROGRAM mode, or Parameter 6 is set to 1.</td>
<td>Change Parameter 6 to 0. Set to RUN mode.</td>
</tr>
<tr>
<td>Error displays when trying to program.</td>
<td>Parameter 7 is set to 1.</td>
<td>Change Parameter 7 to 0.</td>
</tr>
<tr>
<td>Lo Volt or Por On appears while running, or erratic operation.</td>
<td>Power supply to control is inadequate.</td>
<td>Power source must be capable of 15 amps at 120V AC. Use shorter and/or heavier gauge cord.</td>
</tr>
<tr>
<td>Indexer runs through entire program without stopping.</td>
<td>Parameter 10 is set to 3.</td>
<td>Change Parameter 10 to 0.</td>
</tr>
<tr>
<td>Ser-Err (Servo Error) during first home find initiation, or upon indexing.</td>
<td>1. Faulty main cable or cable connector.</td>
<td>1. Check cable and motor fuse, replace if damaged.</td>
</tr>
<tr>
<td></td>
<td>2. Driving a heavy load, or unit is jammed.</td>
<td>2. Reduce workload weight and/or feed rates, and/or eliminate obstruction.</td>
</tr>
<tr>
<td></td>
<td>3. Check Parameter 25.</td>
<td>3. Parameter 25 must be set to 8 for HRT 160, 210, 450 (19 for HRT 310).</td>
</tr>
<tr>
<td>High load (Hi LoAd) Drive Fault (DR FLT)</td>
<td>1. Fixture or workpiece is distorted, or rotary unit is jammed.</td>
<td>1. Ensure fixture workpiece mounting surface is flat within .001", and/or eliminate obstruction.</td>
</tr>
<tr>
<td></td>
<td>2. Tailstock or workpiece support not properly aligned.</td>
<td>2. Align tailstock or support to table within .003 TIR.</td>
</tr>
<tr>
<td></td>
<td>3. Heavy workload.</td>
<td>3. Reduce feed.</td>
</tr>
<tr>
<td></td>
<td>4. Brake does not release</td>
<td>4. Examine Brake solenoid valve, and replace if necessary. Air line kinked or exhaust muffler restricted. Clean muffler with solvent or replace.</td>
</tr>
<tr>
<td></td>
<td>5. Coolant-damaged conduit box</td>
<td>5. Examine conduit box - replace if necessary.</td>
</tr>
<tr>
<td>Workpiece chatter during index or continuous cutting operations.</td>
<td>1. Brake not operative (HRT & TRT).</td>
<td>Consult Haas Service department.</td>
</tr>
<tr>
<td></td>
<td>2. Excessive backlash.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Excessive wormshaft play</td>
<td></td>
</tr>
<tr>
<td>HASC and A6 dead length collets sticking, and/or insufficient clamping force.</td>
<td>Excessive spindle/collet friction.</td>
<td>Lubricate spindle and collet with a Molybdenum disulfide grease.</td>
</tr>
<tr>
<td>Air leaking around brake disc-HRT&TRT.</td>
<td>Chips blown in between O-ring and brake disc.</td>
<td>Consult Haas Service department. (Do not use air gun around brake disc).</td>
</tr>
<tr>
<td>Oil leaking out exhaust muffler (TRT).</td>
<td>Brake air line pressure set too low (TRT).</td>
<td>Set air pressure to between 85 and 120 psi (TRT).</td>
</tr>
<tr>
<td>HRT320FB only – Display reads "Indr dn” and platter does not lift.</td>
<td>Insufficient air pressure, or platter face is prevented from lifting.</td>
<td>Check air pressure (80 psi min). Check for platter clearance or excessive weight of workpiece.</td>
</tr>
<tr>
<td>HRT (A6) – Dead length collets sticking, and/or insufficient clamping force.</td>
<td>Excessive spindle/collet friction.</td>
<td>Lubricate spindle and collet with a Molybdenum disulfide grease.</td>
</tr>
<tr>
<td>Air leaking around rear brake disk.</td>
<td>Chips blown in between O-ring and brake disc.</td>
<td>Contact Haas Service Department. Do not use air gun around brake seal disk.</td>
</tr>
</tbody>
</table>
ROUTINE MAINTENANCE

The Haas rotary units require very little in the line of routine servicing. However, it is very important to perform these services to ensure reliability and long operating life.

INSPECTION OF THE TABLE (HRT & TRT)

To ensure that the table will perform accurately, a few points of inspection that should be performed occasionally. 1. The platter face runout 2. Platter I.D. runout 3. Worm play 4. Backlash between worm and gear 5. Backlash in the system 6. Popout (Face Gear units).

Platter Face Runout: To check the platter runout, mount an indicator to the body of the table. Position the stylus on the face of the platter and index the table 360°. The runout should be 0.0005" or less.

Platter I.D. Runout: To check the platter I.D. runout, mount the indicator to the table body. Position the stylus on the platter through-hole and index the table 360°. Runout should be 0.0005" or less.

Worm Play: Worm play will show up as backlash at the platter; therefore, worm play must be measured before meaningful backlash measurements can be made. Remove the air supply to the table. First drain the oil, then remove the worm housing cover from the side of the table. Mount an indicator to the table body with the sensing arm on the exposed end of the worm. Use an aluminum bar to rock the platter back and forth. There should be no detectable reading. Not applicable for the HRT210SHS.

Backlash Between Worm And Gear: To check the backlash between the worm and gear, the air supply must first be disconnected. Place a magnet on the face of the platter at a radius of 4". Mount an indicator on the body of the table and position the stylus on the magnet. Use an aluminum bar to rock the platter back and forth (apply approximately 10 ft-lb while testing). Backlash should be between 0.0001” (0.0002” for HRT) and 0.0006”. Not applicable for the HRT210SHS.

Backlash In The System: Connect the air to the table. Index the table in the negative direction 360°. Place the indicator at the edge of the platter. Program a .001° move into the controller. Cycle the rotary table at this .001° move until you detect movement with the indicator. Read the amount of backlash in the system from the readout. Not applicable for the HRT210SHS.

Popout (Face Gear only): To check popout, disconnect the air supply from the unit and index the table 360°. Mount an indicator to the table body. Position the stylus on the platter face and zero the dial. Connect the air supply and read the popout from the indicator dial. Popout should be between 0.0001” and 0.0005”

ADJUSTMENTS

The face runout, face I.D. runout, worm play, backlash between worm and gear, and the popout are set at the factory and are not field serviceable. If any of these specifications are out of tolerance, contact your dealer.
Backlash In The System: The backlash in the system can be compensated for by the use of Parameter 15. Contact Haas service department for details.

Coolants

Machine coolant must be water-soluble, synthetic oil based or synthetic based coolant/lubricant. **Using mineral cutting oils will damage rubber components and void the warranty.**

Do not use pure water as a coolant; components will rust. Do not use flammable liquids as coolant.

Do not submerge the unit in coolant. Keep the coolant lines on the work piece spraying away from the rotary unit. Tool spraying and spatter is acceptable. Some mills provide flood coolant such that the rotary unit is practically submerged. Try to cut the flow down to match the job.

Inspect the cables and gaskets for cuts or swelling. Damage must be repaired immediately.

Lubrication

Replace Rotary unit oil every 2 years.

HRT Lubrication

Use the sight-glass to check the oil level. The unit must be stopped and upright to accurately read the oil level. The lube level should reach the middle of the sight glass. **HRT210SHS** - The oil level should show no more than 1/3 on the sight glass.

To add oil to the Rotary Indexer, remove pipe plug from oil fill port. This is located on the top plate. Add Mobil SHC-634 **(HRT210SHS uses mobil SHC-626)** oil until proper level is reached. Replace the fill port bolt and tighten.

HA5C Lubrication

Use the sight-glass to check the oil level. The unit must be stopped and upright to accurately read the oil level. The sight-glass is located on the side of the unit. The lube level should reach the middle of the eye. If necessary, add lube until the level reaches the mid-point of the eye.

To add lube to the Rotary Indexer, locate and remove the Pipe-plug from the lube fill port. This is located under the handle in the casting (see Figure below). Add Mobil SHC-634 oil until the proper level is reached. Replace the fill port bolt and tighten.
TRT Lubrication

The table is lubricated with MOBIL SHC 634. The oil level must not drop below the sight glass level. If the level is low, fill the table through the pipe plug in the body. Fill to the top of the sight glass. Do not over fill. If the oil is dirty, drain and refill with new oil (Mobil SHC-634).

CLEAN UP

After use, it is important to clean the rotary table. Remove all metal chips from the unit. The surfaces of the unit are precisely ground for accurate positioning and metal chips could damage those surfaces. Apply a coat of rust preventative to the collet taper or platter. Do not use air gun around front or rear seals. Chips may damage seal if blown in with an air gun.

HAAS COLLET KEY REPLACEMENT

Remove the pipe plug from the access hole with a 3/16 allen wrench. Align the collet key with the access hole by jogging the spindle. Remove the collet key with a 3/32 allen wrench. Replace the collet key with Haas P/N 22-4052 only. A spare collet key is located on the front casting face. Screw the collet into the spindle until it begins to protrude into the inside diameter. Place a new collet into the spindle while aligning the keyway with the key. Tighten the key until it hits the bottom of the keyway, then back off 1/4 turn. Pull the collet out to make sure it slides freely. Replace the pipe plug in the access hole.

NOTE: Never run the indexer with the collet key backed out; this will damage the spindle and gall the spindle bore.
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>DWG #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>20-4116</td>
<td>MOTOR SPACER</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>20-4230</td>
<td>KEY BODY</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>20-4250</td>
<td>BODY MACHINED 450mm RT (HRT600:20-4485A)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>20-4251</td>
<td>PLATTER (HRT600: 20-4487)</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>20-4252</td>
<td>SPINDLE</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>20-4253A</td>
<td>FLEX BRAKE</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>20-4254</td>
<td>WORM GEAR</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>20-4258</td>
<td>HOUSING COVER</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>20-4508</td>
<td>PULLEY DRIVEN 450-78T (HRT600: 20-4509)</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>20-4264</td>
<td>LOCKRING</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>25-4814</td>
<td>MOTOR ENCLosURE (HRT600: 25-4815)</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>25-4830</td>
<td>ENCLosURE CovER (HRT600: 25-4833)</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>25-4832</td>
<td>SIDE COVER (HRT600: 25-4836)</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>25-4831</td>
<td>TOP COVER (HRT600: 25-4834)</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>35-4210</td>
<td>OIL SIGHT GLASS</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>35-4245A</td>
<td>WORM SHAFT ASSY</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>35-4250</td>
<td>WORM SPACER</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>35-4255</td>
<td>CHECK VALVE</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>35-4260</td>
<td>HYDRAULIC CYLINDER ASSY</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>35-4280</td>
<td>HOME SWITCH ASSY WP</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>35-4300B</td>
<td>CBL BL ALUM J-BOX 16.5'</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>40-1610</td>
<td>SHCS 1/4-20 X 1</td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>40-1630</td>
<td>SHCS 1/4-20 X 5/16</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>40-1980</td>
<td>BHCS 1/4-20 x 1/2</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>40-16385</td>
<td>SHCS 5/16-18 X 3/4</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>40-16437</td>
<td>SHCS 3/8-16 X 3 1/4</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>40-16438</td>
<td>SHCS 3/8-16 X 4</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
<td>40-1679</td>
<td>SHCS 1/4-20 X 2 1/2</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>40-1696</td>
<td>SHCS 1/4-20 X 4 1/2</td>
</tr>
<tr>
<td>30</td>
<td>16</td>
<td>40-1750</td>
<td>BHCS 10-32 X 3/8</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>40-1804</td>
<td>SHCS 8-32 X 2</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>40-1960</td>
<td>SHCS 3/8-16 X 1 ¼</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>40-1632</td>
<td>SHCS 1/4-20 X 5/16</td>
</tr>
<tr>
<td>34</td>
<td>35</td>
<td>40-16391</td>
<td>SHCS 3/8-16 X 3/4</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>43-7004</td>
<td>HHb 5/16-18 x 7/8</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>43-7004</td>
<td>HHb 5/16-18 x 7/8</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>44-16205</td>
<td>SSS 8-32 X 1 FULL DOG</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>44-1696</td>
<td>SSS 1/2-13 X 3/4 FULL DOG</td>
</tr>
<tr>
<td>39</td>
<td>16</td>
<td>45-16390</td>
<td>WASHER 1/4 FLAT SAE PLT</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>45-1730</td>
<td>WASHER 3/8 HARD</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>45-1739</td>
<td>WASHER 5/16 FLAT A325</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>48-1663</td>
<td>DOWEL PIN 3/16 X 5/8</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>49-1008</td>
<td>EYE BOLT 1/2-13 X 7/8</td>
</tr>
<tr>
<td>44</td>
<td>4</td>
<td>49-0042</td>
<td>WASHER FLAT</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>51-0077</td>
<td>NEEDLE ROLLER</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>51-2038</td>
<td>BRING CROSS ROLLER</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>56-2083</td>
<td>RETAINING RING N5000-244</td>
</tr>
<tr>
<td>48</td>
<td>1</td>
<td>57-0020</td>
<td>O-RING 2-210 VITON</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>57-0025</td>
<td>O-RING 2-275-V-1164-75</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>57-0094</td>
<td>O-RING 2-384-V-1164-75 (HRT600:57-2247)</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>57-0097</td>
<td>O-RING 2-162 VITON</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>57-0098</td>
<td>O-RING 2-270 VITON</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>57-0101</td>
<td>O-RING 2-373-V-1164-75</td>
</tr>
<tr>
<td>54</td>
<td>1</td>
<td>57-2086</td>
<td>SEAL CR19606</td>
</tr>
<tr>
<td>55</td>
<td>1</td>
<td>57-2251</td>
<td>O-RING 2-276-V-1164-75</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>57-2831</td>
<td>O-RING 2-130 BUNA</td>
</tr>
<tr>
<td>57</td>
<td>2</td>
<td>57-4134</td>
<td>GASKET AIR FITTINGS</td>
</tr>
</tbody>
</table>

Table Notes:
- ID 17.1: 20-4255 WORM SHAFT
- ID 17.2: 20-4256 BEARING HOUSING
- ID 17.3: 20-4257 HOUSING NUT
- ID 17.4: 51-1013 BEARING ANG CONTACT
- ID 17.5: 51-2043 BEARHUG LOCKNUT BH-09
- ID 17.6: 20-3401 HOUSING, DUAL ECC
- ID 19.1: 58-16708 1/4 NPT X 1/4 POLYLINE
- ID 19.2: 58-1734 HYD HEX NIPPLE 1/4 NPT
- ID 19.3: 58-27396 DRY GUAGE 2000PSI 1/4NPT
- ID 19.4: 58-2753 HYDRAULIC CHECK VALVE
- ID 19.5: 58-3695 1/2 NPT FEMALE T
- ID 19.6: 58-1682 NIPPLE 1/4 NPT X 2 SST
- ID 35-5425A: WORM SHAFT ASSY
- ID 35-4245: CHECK VALVE ASSY
- ID 35-4250: ACCUMULATOR ASSY
35-4454
MTR SYSTEM ASSY 450MMB
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>DWG #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>4</td>
<td>22-4207</td>
<td>STANDOFF</td>
</tr>
<tr>
<td>16.2</td>
<td>1</td>
<td>20-4259</td>
<td>MOTOR MOUNTING PLATE</td>
</tr>
<tr>
<td>16.3</td>
<td>1</td>
<td>20-4519</td>
<td>PULLEY DRIVE 45600B</td>
</tr>
<tr>
<td>16.4</td>
<td>1</td>
<td>25-4269</td>
<td>BRACKET SOLENOID</td>
</tr>
<tr>
<td>16.5</td>
<td>1</td>
<td>30-1103</td>
<td>SOLENOID ASSY WP</td>
</tr>
<tr>
<td>16.6</td>
<td>1</td>
<td>62-0014</td>
<td>MOTOR 09 YASKAWA SIGMA</td>
</tr>
<tr>
<td>16.7</td>
<td>4</td>
<td>40-1629</td>
<td>SHCS 5/16-18 X 2 3/4</td>
</tr>
<tr>
<td>16.8</td>
<td>2</td>
<td>40-1799</td>
<td>SHCS 8-32 X 1</td>
</tr>
<tr>
<td>16.9</td>
<td>4</td>
<td>45-1600</td>
<td>WASHER 5/16 SPLIT LCK PLT</td>
</tr>
<tr>
<td>16.10</td>
<td>2</td>
<td>45-1603</td>
<td>WASHER #8 SPLIT LCK PLT</td>
</tr>
<tr>
<td>16.11</td>
<td>1</td>
<td>54-4508</td>
<td>BELT GT 5MR-800-15</td>
</tr>
<tr>
<td>16.12</td>
<td>1</td>
<td>57-0149</td>
<td>Seal 1.188 CR400301</td>
</tr>
</tbody>
</table>

35-4260
HYDRAULIC CYLINDER ASSY
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>DWG #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>1</td>
<td>20-4270</td>
<td>PRIMARY CYLINDER</td>
</tr>
<tr>
<td>20.2</td>
<td>1</td>
<td>20-4271</td>
<td>PRIMARY PISTON 450MM</td>
</tr>
<tr>
<td>20.3</td>
<td>1</td>
<td>20-4272</td>
<td>CAP PRIMARY CYLINDER</td>
</tr>
<tr>
<td>20.4</td>
<td>1</td>
<td>20-4273A</td>
<td>SECONDARY CYLINDER</td>
</tr>
<tr>
<td>20.5</td>
<td>1</td>
<td>20-4274</td>
<td>SECONDARY PISTON</td>
</tr>
<tr>
<td>20.6</td>
<td>1</td>
<td>56-2084</td>
<td>RETAINING RING N5000-200</td>
</tr>
<tr>
<td>20.7</td>
<td>1</td>
<td>57-1036</td>
<td>POLYSEAL 1870-16250</td>
</tr>
<tr>
<td>20.8</td>
<td>1</td>
<td>57-1037</td>
<td>WEARBAND W2-2000-375</td>
</tr>
<tr>
<td>20.9</td>
<td>2</td>
<td>58-3075</td>
<td>90 DEG FITTING 1/8-1/4 NPT</td>
</tr>
<tr>
<td>20.10</td>
<td>1</td>
<td>59-2058</td>
<td>BALL 1/4 STEEL</td>
</tr>
<tr>
<td>20.11</td>
<td>1</td>
<td>59-2083</td>
<td>SPRING 31/64 X 4 7/16</td>
</tr>
<tr>
<td>20.12</td>
<td>1</td>
<td>58-0058</td>
<td>O-RING 2-014 V-1164-75</td>
</tr>
<tr>
<td>20.13</td>
<td>1</td>
<td>57-0096</td>
<td>O-RING 2-133 VITON</td>
</tr>
<tr>
<td>20.14</td>
<td>1</td>
<td>57-1038</td>
<td>POLYSEAL 12500250</td>
</tr>
</tbody>
</table>
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-16372</td>
<td>SHCS 3/8-16 x 1-1/2 (x4)</td>
</tr>
<tr>
<td>20-4151</td>
<td>Platter 160mm</td>
</tr>
<tr>
<td>57-2230</td>
<td>O-Ring 2-161</td>
</tr>
<tr>
<td>51-2027</td>
<td>Bearing Deep Grv 6016</td>
</tr>
<tr>
<td>57-2107</td>
<td>O-Ring 2-040</td>
</tr>
<tr>
<td>20-4152</td>
<td>Spindle 160mm</td>
</tr>
<tr>
<td>20-4154</td>
<td>Worm Gear 160mm</td>
</tr>
<tr>
<td>69-18101</td>
<td>Magnet Microswitch</td>
</tr>
<tr>
<td>40-2003</td>
<td>SHCS 1/4-20 x 1-1/2 (x6)</td>
</tr>
<tr>
<td>51-2076</td>
<td>Bearing Deep Grv 6013</td>
</tr>
<tr>
<td>40-1666</td>
<td>MC DR Screw 2 x 1/4</td>
</tr>
<tr>
<td>40-1630</td>
<td>SHCS 1/4-20 x 5/16</td>
</tr>
<tr>
<td>20-4602</td>
<td>Alignment Key</td>
</tr>
<tr>
<td>20-4150</td>
<td>Body Machined 160mm</td>
</tr>
<tr>
<td>57-4180</td>
<td>Gasket Side Plate</td>
</tr>
<tr>
<td>40-1612</td>
<td>FHCS 1/4-20 x 3/4 (x8)</td>
</tr>
<tr>
<td>20-3253</td>
<td>Housing Bearing Dual Ecc</td>
</tr>
<tr>
<td>51-0076</td>
<td>Needle Bearing</td>
</tr>
<tr>
<td>20-4124</td>
<td>Lockring Driven Pulley</td>
</tr>
<tr>
<td>20-4501</td>
<td>Pulley Driven 160-52T</td>
</tr>
<tr>
<td>54-4501</td>
<td>Drive Belt PGGT 5M x 15</td>
</tr>
<tr>
<td>25-4805</td>
<td>Belt Enclosure</td>
</tr>
<tr>
<td>27-4507</td>
<td>Pulley Drive Sigma08 26T</td>
</tr>
<tr>
<td>56-2135</td>
<td>Retaining Ring 1.188 (x2)</td>
</tr>
<tr>
<td>40-16385</td>
<td>SHCS 5/16-18 x 3/4 (x4)</td>
</tr>
<tr>
<td>36-3002</td>
<td>Micro Switch Assembly</td>
</tr>
<tr>
<td>44-16206</td>
<td>SSS 8-32 x 1 Full Dog</td>
</tr>
<tr>
<td>20-4552</td>
<td>Side Plate Motor</td>
</tr>
<tr>
<td>58-16708</td>
<td>Fitting Poly 1/4 x NPT-1/4-M</td>
</tr>
<tr>
<td>58-2255</td>
<td>Ftg NPT-1/8-F x NPT-1/8-M</td>
</tr>
</tbody>
</table>

HRT210SP

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-1960</td>
<td>SHCS 3/8-16 x 1-3/4 (x4)</td>
</tr>
<tr>
<td>20-4101</td>
<td>Platter 210mm</td>
</tr>
<tr>
<td>57-2221</td>
<td>O-Ring 2-260</td>
</tr>
<tr>
<td>51-2027</td>
<td>Bearing Deep Grv 6016</td>
</tr>
<tr>
<td>57-0054</td>
<td>O-Ring 2-044</td>
</tr>
<tr>
<td>20-4102</td>
<td>Spindle 210mm</td>
</tr>
<tr>
<td>20-4102</td>
<td>Worm Gear 210mm</td>
</tr>
<tr>
<td>69-18101</td>
<td>Magnet Microswitch</td>
</tr>
<tr>
<td>40-2035</td>
<td>SHCS 1/4-20 x 1-3/4 (x6)</td>
</tr>
<tr>
<td>51-2026</td>
<td>Bearing Deep Grv 6021</td>
</tr>
<tr>
<td>40-1666</td>
<td>MC DR Screw 2 x 1/4</td>
</tr>
<tr>
<td>29-0060</td>
<td>Nameplate</td>
</tr>
<tr>
<td>58-2744</td>
<td>Ftg NPT-1/4-M Plug Mag</td>
</tr>
<tr>
<td>40-1630</td>
<td>SHCS 1/4-20 x 5/16</td>
</tr>
<tr>
<td>20-4128</td>
<td>Key Body</td>
</tr>
<tr>
<td>20-4100</td>
<td>Body Machined 210mm</td>
</tr>
<tr>
<td>57-4135</td>
<td>Gasket Side Plate</td>
</tr>
<tr>
<td>40-1612</td>
<td>FHCS 1/4-20 x 3/4 (x8)</td>
</tr>
<tr>
<td>20-3186</td>
<td>Housing Bearing Dual Ecc</td>
</tr>
</tbody>
</table>
39. 58-3065 Air Muffler NPT-1/4-M
 58-16708 Fitting Poly 1/4 x NPT-1/4-M
40. 36-4046A Cable BL08 Cast J-Box 14’
41. 40-1799 SHCS 8/32 x 1
 45-0042 Washer Flat
 57-0057 O-Ring 2-007
42. 58-3618 Ftng NPT-1/4-F x NPT-1/4-M
 58-3710 Ftng Quik-1/4-M x NPT-1/4-M
 58-1677 Ftng blkhd NPT-1/4 x 750 dia
43. 40-1750 BHCS 10/32 x 3/8 (x12)
44. 25-4844 Motor Enclosure Cover
45. 40-1500 SHCS 5/16-18 x 1 (x8)
46. 20-4103A Brake Disc 210mm
47. 57-2222 O-Ring 2-369

HRT310SP

1. 40-1661 SHCS 1/2-13 x 2 (x4)
2. 20-4211 Platter 310mm
3. 57-0025 O-Ring 2-275
4. 51-2037 Bearing Deep Grv 6032
5. 57-2121 O-Ring 2-161
6. 20-4212 Spindle 310mm
7. 20-4214 Worm Gear 310mm
8. 69-18101 Magnet Microswitch
9. 40-1693 SHCS 1/4-20 x 2 (x6)
10. 51-2036 Bearing Deep Grv 6024
11. 40-1666 MC DR Screw 2 x 1/4
12. 29-0606 Nameplate
13. 58-2744 Ftng NPT-1/4-M Plug Mag
14. 40-1630 SHCS 1/4-20 x 5/16
15. 20-4128 Key Body
16. 20-4210 Body Machined 310mm
17. N/A
18. 40-1612 FHCS 1/4-20 x 3/4 (x8)
19. 20-3217 Housing Bearing Dual Ecc
20. 51-0036 Needle Bearing
21. 57-1051 Seal 42mm CR16504
22. 20-4229 Lockring Driven Pulley
23. 20-4506 Pulley Driven 310-64T
24. 40-1610 SHCS 1/4-20 x 1 (x3)
25. 54-4508 Drive Belt PGGT 5M x 15
26. 25-4806 Belt Enclosure
27. 20-4516 Pulley Drive Sigma08 26T
28. 56-2087 Retaining Ring 2.047 (x2)
29. 40-1500 SHCS 5/16-18 x 1 (x4)
30. 36-3006 Micro Switch Assembly
31. 44-16206 SSS 8-32 x 1 Full Dog
32. 20-4470 Side Plate Motor
33. 58-16708 Fitting Poly 1/4 x NPT-1/4-M
 58-2255 Ftng NPT-1/8-F x NPT-1/8-M
34. 62-0014 Servomotor Yask 08 no brk
35. 57-4475 gasket Motor Enclosure (x2)
36. 25-4845 Motor Enclosure
37. 57-4133 Gasket Square J-Box
38. 57-4134 Gasket Air Fittings
39. 58-3065 Air Muffler NPT-1/4-M
 58-16708 Fitting Poly 1/4 x NPT-1/4-M
40. 36-4046A Cable BL08 Cast J-Box 28.5’
41. 40-1798 SHCS 8/32 x 1-3/4
 45-0042 Washer Flat
 57-0057 O-Ring 2-007
42. 58-3618 Ftng NPT-1/4-F x NPT-1/4-M
 58-3710 Ftng Quik-1/4-M x NPT-1/4-M
 58-1677 Ftng blkhd NPT-1/4 x 750 dia
43. 40-1750 BHCS 10/32 x 3/8 (x12)
44. 25-4846 Motor Enclosure Cover
45. 40-1636 SHCS 5/16-18 x 1 1/2 (x4)
46. 20-4213 Brake Disc 310mm
47. 57-2252 O-Ring 2-381
48. 57-2144 O-Ring 2-256
49. 20-4236 Spindle Spacer
50. 49-1008 Eye Bolt 1/2-13 x 7/8
51. 58-3105 Fitting NPT-1/4-M Plug
52. 25-4828 Top Cover
53. 40-1980 BHCS 1/4-20 x 1/2
54. 28-4126 Sight Glass Oil
55. 25-4826 Side Cover
56. 35-4110A Worm Shaft Assy 210 Ecc
57. 40-1715 SHCS 5/16-18 x 1-1/2 (x4)
58. 57-2220 O-Ring 2-152
59. 20-4108 Housing Cover 210mm
60. 20-4108 Housing Cover 310mm
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
ID | PART/NO | DESCRIPTION
---|---|---
1. | 20-4072A | SIDE PLATE
 | 20-4073 | BOTTOM PLATE (T5C3)
 | 20-4082 | BOTTOM PLATE (T5C4)
 | 20-4085 | BOTTOM PLATE (T5C2)
2. | 20-4074 | TOP PLATE (T5C3)
3. | 20-4083 | TOP PLATE (T5C4)
4. | 20-4086 | TOP PLATE (T5C2)
5. | 20-4088 | VALVE MOUNT STRIP (T5C2)
 | 20-4089 | VALVE MOUNT STRIP (T5C4)
6. | 20-4090 | VALVE MOUNT STRIP (T5C3)
7. | 20-4093 | BEARING SUPPORT
8. | 384340 | A-FRAME SUPPORT
9. | 22-4183 | PILOTING PLUG
10. | 25-4812 | CHIP GUARD (T5C2)
11. | 25-4803 | CHIP GUARD (T5C3)
12. | 25-4811 | CHIP GUARD (T5C4)
13. | 40-16093 | BHCS, 10-32 x 3/4"
14. | 40-1610 | SHCS, 1/4-20 x 1"
15. | 40-1654 | SHCS, 1/2-13 x 1"
16. | 40-1678 | HHB, 1/2-13 X 1 1/4"
17. | 40-2030 | SHCS, 3/8-16 X 3/4"
18. | 41-1604 | PPHS, 8-32 X 3/4"
19. | 43-16012 | HHB, 1/2-13 X 2"
20. | 45-1740 | WASHER, BLACK HARD 1/2"
21. | 46-3000 | NUT "T" 1/2-13
22. | 48-1665 | PIN, DOWEL 5/16 X 3/4"
23. | 51-0006 | NEEDLE ROLLER, 50 X 58 X 25mm
24. | 57-2086 | OIL SEAL, CRW1 19606
25. | 57-4094 | CONDUIT SRAIN RELIEF GASKET
26. | 58-1627 | 1/8-27 PIPE PLUG
27. | 58-16700 | STEET ELBOW, 1/8"
28. | 58-16732 | 1/8 X 1/8 MALE HEX JOINT
29. | 58-16752 | 90 COMPRESSION TILT
30. | 58-16755 | MALE AIR FITTING, 1/8"
31. | 58-3105 | PIPE PLUG, 1/4 NPT
32. | 58-4055 | COPPER TUBE, BET. VALVES
33. | 58-4080 | 0.040 ORIFICE FITTING 1/8"
34. | 58-4091 | COPPER TUBE (T5CN)
35. | 59-2746 | REVERSE ACTING, TV-4DMP
36. | 40-1697 | SHCS 1/4-20 X 3/4
37. | 22-2065 | LOCATING PIN
38. | 40-1632 | SHCS, 1/4-20 X 1/2
39. | 58-3100 | FEMALE BRANCH T 1/8 NPT

FOR USE WITH AC25

36. | 58-2110 | SLEEVE NUT
37. | 58-2130 | SLEEVE COMP NYLON TUBING
38. | 59-3058 | 5/32 TUBE ELBOW
39. | 58-4096 | COPPER TUBE (T5CN AC25)
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>DWG#</th>
<th>DESCRIPTION</th>
<th>ID</th>
<th>QTY</th>
<th>DWG#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>25-9057</td>
<td>SIDE COVER</td>
<td>41</td>
<td>4</td>
<td>40-1798</td>
<td>1/4-M X NPT-1/4-M STR</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>40-1750</td>
<td>BHCS 10-32 X 3/8</td>
<td></td>
<td></td>
<td></td>
<td>SHCS 8-32 X 1 3/4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>51-0196</td>
<td>BEARING SLEEVE</td>
<td>42</td>
<td>4</td>
<td>45-0042</td>
<td>ZINC PLATED</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>20-4076</td>
<td>SHAFT SUPPORT</td>
<td>43</td>
<td>4</td>
<td>57-0057</td>
<td>O-RING 2-007 VITON</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>20-4299</td>
<td>SHAFT SUPPORT, ADJUSTER</td>
<td>44</td>
<td>1</td>
<td>20-3071/3072</td>
<td>J-BOX, ENCODER</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>40-1640</td>
<td>SHCS 10-32 X 1/2</td>
<td>45</td>
<td>1</td>
<td>57-4133</td>
<td>GASKET SQUARE</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>44-1634</td>
<td>SSS 10-32 X 3/8 FULL DOG</td>
<td>46</td>
<td>1</td>
<td>57-0459</td>
<td>J-BOX</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>51-0051</td>
<td>CAM FOLLOWER</td>
<td>47</td>
<td>1</td>
<td>25-9056</td>
<td>BRACKET, MOTOR</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>40-16413</td>
<td>PPHS 4-40 X 1/4 ZINC</td>
<td></td>
<td></td>
<td></td>
<td>ENCL HIT210</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>20-4061</td>
<td>DRIVER GENEVA 1 PIN</td>
<td>50</td>
<td>14</td>
<td>40-1750</td>
<td>BHCS 10-32 X 3/8</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>46-16551</td>
<td>NUT 3/8-24 HEX</td>
<td></td>
<td></td>
<td></td>
<td>ENCLOSURE COVER</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>33A-5R & 33A-5L DC RIGHT ANGLE</td>
<td></td>
<td></td>
<td></td>
<td>HIT210</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>20-4077</td>
<td>GEARMOTOR</td>
<td>51</td>
<td>1</td>
<td>25-9056</td>
<td>HAAS INDEX TABLE</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>40-2026</td>
<td>SHCS 10-32 X 1</td>
<td></td>
<td></td>
<td></td>
<td>CCA</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>20-4048</td>
<td>TOP PLATE</td>
<td></td>
<td></td>
<td></td>
<td>WASHER #4 INT LOCK PLT</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>40-2026</td>
<td>SHCS 10-32 X 1</td>
<td></td>
<td></td>
<td></td>
<td>MOTOR ENCLOSURE</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>49-1008</td>
<td>EYE BOLT 1/2-13 X 7/8</td>
<td></td>
<td></td>
<td></td>
<td>HIT210</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>40-1640</td>
<td>SHCS 10-32 X 1/2</td>
<td></td>
<td></td>
<td></td>
<td>GASKET, MOTOR</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>25-9072</td>
<td>PROX BRACKET</td>
<td></td>
<td></td>
<td></td>
<td>ENCL HIT210</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>69-1700</td>
<td>PROX SW NC 2WR 1.0M</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-167 BUNA</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>57-0016</td>
<td>COVER PLATE, REAR</td>
<td></td>
<td></td>
<td></td>
<td>COVER PLATE, REAR</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>20-4078</td>
<td>HIT210</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-167 BUNA</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>51-10059</td>
<td>S BRG 1.25 SLV BRONZE</td>
<td></td>
<td></td>
<td></td>
<td>COVER PLATE, REAR</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>57-0476</td>
<td>SEAL 1.25 CR12340 1.756OD</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-167 BUNA</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>40-1640</td>
<td>SHCS 10-32 X 1/2</td>
<td></td>
<td></td>
<td></td>
<td>SEAL 1.25 CR12340 1.756OD</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>40-0114</td>
<td>NUT 1 3/8-12 JAM</td>
<td></td>
<td></td>
<td></td>
<td>SHCS 10-32 X 1/2</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>51-2984</td>
<td>THRUST WASHER TRB-3446</td>
<td></td>
<td></td>
<td></td>
<td>NUT 1 3/8-12 JAM</td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>20-4062</td>
<td>GENEVA STAR, 8 STN HIT210</td>
<td></td>
<td></td>
<td></td>
<td>THRUST WASHER TRB-3446</td>
</tr>
<tr>
<td>29</td>
<td>4</td>
<td>40-16413</td>
<td>SHCS M3 X 5</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>69-1700</td>
<td>PROX SW NC 2WR 1.0M</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>69-1700</td>
<td>PROX SW NC 2WR 1.0M</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>57-4133</td>
<td>AIR MUFFLER NPT-1/4-M</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>58-16708</td>
<td>FITG POLY-1/4 X NPT-1/4 M</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>58-1677</td>
<td>FITG BKHD NPT-1/4 X .750 DIA</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>58-3065</td>
<td>AIR MUFFLER NPT-1/4-M</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>57-4134</td>
<td>GASKET AIR FITTING</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>58-16708</td>
<td>FITG POLY-1/4 X NPT-1/4 M</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>38</td>
<td>1</td>
<td>58-1677</td>
<td>FITG BKHD NPT-1/4 X .750 DIA</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>58-3618</td>
<td>FITG NPT-1/4-F X NPT-1/4-M 90 BR</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>58-3710</td>
<td>FITG QUIK CONN-</td>
<td></td>
<td></td>
<td></td>
<td>O-RING 2-327 VITON</td>
</tr>
</tbody>
</table>
TR110 Rotary Table w/HRT110 Rotary Table

Tilting 2-Axis Brushless Trunnion Rotary Table with 110mm Brushless Rotary Table

Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>DWG#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>25-7809</td>
<td>SPLASH SHIELD TR110</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>HRT110</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>20-3023</td>
<td>DRIVE PLATE TR110</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>20-3235</td>
<td>BRAKE FLEX CYLINDER HRT110 TR110</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>20-2947</td>
<td>MACHINED BODY, HRT110</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>58-16700</td>
<td>FITG NPT-1/8-F X NPT-1/8-M 90 BR</td>
</tr>
<tr>
<td>7.</td>
<td>2</td>
<td>40-16439</td>
<td>SHCS 3/8-16 X 5</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>25-6771</td>
<td>B-Axis Cover TR110</td>
</tr>
<tr>
<td>9.</td>
<td>4</td>
<td>40-1605</td>
<td>FHCS 6-32 X 3/8 ZINC PLATED</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>29-0606</td>
<td>NAMEPLATE</td>
</tr>
<tr>
<td>11.</td>
<td>1</td>
<td>59-2930</td>
<td>HARMONIC DRIVE 50:1 CSF-45-50-5HV</td>
</tr>
<tr>
<td>12.</td>
<td>1</td>
<td>57-0378</td>
<td>O-RING 85 X 1.5mm</td>
</tr>
<tr>
<td>13.</td>
<td>1</td>
<td>20-3030</td>
<td>PLATTER SPACER</td>
</tr>
<tr>
<td>14.</td>
<td>1</td>
<td>20-2949</td>
<td>MOTOR ADAPTER, HRT110</td>
</tr>
<tr>
<td>15.</td>
<td>8</td>
<td>40-1920A</td>
<td>FHCS ¼-20 X 5/8</td>
</tr>
<tr>
<td>16.</td>
<td>1</td>
<td>Part of 59-2930</td>
<td>HARMONIC DRIVE COUPLER (packaged w/Harmonic Drive)</td>
</tr>
<tr>
<td>17.</td>
<td>1</td>
<td>59-0787</td>
<td>GEARBOX RGH-25-80SP HARMONIC DRIVE</td>
</tr>
<tr>
<td>18.</td>
<td>1</td>
<td>57-0368</td>
<td>GASKET, MOTOR COVER HRT110</td>
</tr>
<tr>
<td>19.</td>
<td>1</td>
<td>20-2952</td>
<td>MOTOR COVER PLATE</td>
</tr>
<tr>
<td>20.</td>
<td>8</td>
<td>40-1976</td>
<td>BHCS ¼-20 X ¾ ZINC PLATED</td>
</tr>
<tr>
<td>21.</td>
<td>1</td>
<td>25-7766</td>
<td>COVER, SUPPORT FRAME</td>
</tr>
<tr>
<td>22.</td>
<td>1</td>
<td>58-0959</td>
<td>FITG SWIVEL 90 DEG ¾-18NPTF X1/</td>
</tr>
<tr>
<td>23.</td>
<td>3</td>
<td>40-1639</td>
<td>SHCS 3/8-16 X 1 DOMESTIC ONLY</td>
</tr>
<tr>
<td>24.</td>
<td>1</td>
<td>58-1671</td>
<td>NIPPLE 1/8 NPT X 2 BRASS LOCTITE V</td>
</tr>
<tr>
<td>25.</td>
<td>1</td>
<td>56-0111</td>
<td>RTNG RING N5000-281 TRUARC 2.812 IN</td>
</tr>
<tr>
<td>26.</td>
<td>1</td>
<td>51-0183</td>
<td>BEARING DEEP GROOVE 50 ID X 72 OD X</td>
</tr>
<tr>
<td>27.</td>
<td>2</td>
<td>40-2028</td>
<td>SHCS 10-32 X 1 1/4</td>
</tr>
<tr>
<td>28.</td>
<td>1</td>
<td>59-2044</td>
<td>CABLE CLAMP 3/4 RICHC SPN-12</td>
</tr>
<tr>
<td>29.</td>
<td>1</td>
<td>20-3026</td>
<td>SHIM PLATE TR110</td>
</tr>
<tr>
<td>30.</td>
<td>1</td>
<td>20-3029</td>
<td>SUPPORT FRAME TR110</td>
</tr>
<tr>
<td>31.</td>
<td>2</td>
<td>40-16438</td>
<td>SHCS 3/8-16 X 4</td>
</tr>
<tr>
<td>32.</td>
<td>2</td>
<td>40-16439</td>
<td>SHCS 3/8-16 X 5</td>
</tr>
<tr>
<td>33.</td>
<td>1</td>
<td>20-3025</td>
<td>SUPPORT SLEEVE TR110</td>
</tr>
<tr>
<td>34.</td>
<td>1</td>
<td>20-3024</td>
<td>SUPPORT PLATE TR110</td>
</tr>
<tr>
<td>35.</td>
<td>1</td>
<td>58-2458</td>
<td>TEFLON HOSE</td>
</tr>
<tr>
<td>36.</td>
<td>1</td>
<td>20-3571</td>
<td>HYDRAULIC FITTING TR110</td>
</tr>
<tr>
<td>37.</td>
<td>1</td>
<td>58-16700</td>
<td>FITG NPT-1/8-F X NPT-1/8-M 90 BR</td>
</tr>
<tr>
<td>38.</td>
<td>2</td>
<td>48-0105</td>
<td>PULL PIN 7/16 X 1 MCMASTER 97175A</td>
</tr>
<tr>
<td>39.</td>
<td>1</td>
<td>20-2951</td>
<td>T BAR CLAMP</td>
</tr>
<tr>
<td>40.</td>
<td>1</td>
<td>20-3022</td>
<td>BASE PLATE TR110</td>
</tr>
<tr>
<td>41.</td>
<td>1</td>
<td>25-6770</td>
<td>CABLE COVER CHANNEL TR110</td>
</tr>
<tr>
<td>42.</td>
<td>4</td>
<td>40-1632</td>
<td>SHCS 1/4-20 X 1/2 ZINC PLATED</td>
</tr>
<tr>
<td>43.</td>
<td>1</td>
<td>44-1640</td>
<td>SSS 3/8-16 X 1 CUP PT</td>
</tr>
<tr>
<td>44.</td>
<td>1</td>
<td>57-0399</td>
<td>O-RING 2-042 BUNA</td>
</tr>
<tr>
<td>45.</td>
<td>1</td>
<td>57-0398</td>
<td>QUAD RING Q4-334</td>
</tr>
<tr>
<td>46.</td>
<td>1</td>
<td>20-3234</td>
<td>BRAKE CAP HRT110 TR110</td>
</tr>
<tr>
<td>47.</td>
<td>1</td>
<td>20-2994</td>
<td>NUT, HOME SWITCH M8X1</td>
</tr>
<tr>
<td>48.</td>
<td>1</td>
<td>32-0053</td>
<td>ROTARY HOME SENSOR SW 16HRT110/TR110</td>
</tr>
<tr>
<td>49.</td>
<td>1</td>
<td>20-2948</td>
<td>PLATTER BRAKE HRT110</td>
</tr>
<tr>
<td>50.</td>
<td>8</td>
<td>40-0089</td>
<td>SHCS M8 X 35 DOMESTIC ONLY</td>
</tr>
<tr>
<td>51.</td>
<td>1</td>
<td>57-0400</td>
<td>O-RING 2-245 BUNA</td>
</tr>
<tr>
<td>52.</td>
<td>1</td>
<td>57-0397</td>
<td>HRT110 TEFLON SEAL PLATTER SEAL</td>
</tr>
<tr>
<td>53.</td>
<td>12</td>
<td>40-1610</td>
<td>SHCS 1/4-20 X 1 DOMESTIC ONLY</td>
</tr>
<tr>
<td>54.</td>
<td>2</td>
<td>57-0057</td>
<td>O-RING 2-007 VITON</td>
</tr>
</tbody>
</table>
Note: All rotary tables use Polyurethane tubing for all air lines. Specifications are: 1/4 O.D. x .160 I.D. 95A Durometer.
TR160

<table>
<thead>
<tr>
<th></th>
<th>Component Code</th>
<th></th>
<th>Component Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>25-4859</td>
<td>2.</td>
<td>57-4726</td>
</tr>
<tr>
<td>3.</td>
<td>25-4858</td>
<td>4.</td>
<td>57-4725</td>
</tr>
<tr>
<td>5.</td>
<td>59-4700</td>
<td>6.</td>
<td>N/A</td>
</tr>
<tr>
<td>7.</td>
<td>20-4158</td>
<td>8.</td>
<td>57-2220</td>
</tr>
<tr>
<td>11.</td>
<td>57-4730</td>
<td>12.</td>
<td>25-4809</td>
</tr>
<tr>
<td>13.</td>
<td>57-2125</td>
<td>14.</td>
<td>20-4710</td>
</tr>
<tr>
<td>15.</td>
<td>57-4728</td>
<td>16.</td>
<td>57-4133</td>
</tr>
<tr>
<td>17.</td>
<td>20-4501</td>
<td>18.</td>
<td>54-4505</td>
</tr>
<tr>
<td>19.</td>
<td>20-4507</td>
<td>20.</td>
<td>57-4727</td>
</tr>
<tr>
<td>21.</td>
<td>25-4860</td>
<td>22.</td>
<td>57-4729</td>
</tr>
<tr>
<td>23.</td>
<td>25-4861</td>
<td>24.</td>
<td>57-4723 (TR-160-2: 57-4737)</td>
</tr>
<tr>
<td>27.</td>
<td>57-2232</td>
<td>28.</td>
<td>57-2231</td>
</tr>
</tbody>
</table>

* A-axis slave assembly only ** A-axis drive assembly only *** B-axis assembly only

TR210

<table>
<thead>
<tr>
<th></th>
<th>Component Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>25-4872</td>
</tr>
<tr>
<td>2.</td>
<td>57-4657</td>
</tr>
<tr>
<td>3.</td>
<td>25-4871</td>
</tr>
<tr>
<td>4.</td>
<td>57-4656</td>
</tr>
<tr>
<td>5.</td>
<td>59-4367</td>
</tr>
<tr>
<td>6.</td>
<td>N/A</td>
</tr>
<tr>
<td>7.</td>
<td>20-4108</td>
</tr>
<tr>
<td>8.</td>
<td>57-2220</td>
</tr>
<tr>
<td>9.</td>
<td>57-4664</td>
</tr>
<tr>
<td>10.</td>
<td>25-4876</td>
</tr>
<tr>
<td>11.</td>
<td>57-4660</td>
</tr>
<tr>
<td>12.</td>
<td>25-4808</td>
</tr>
<tr>
<td>13.</td>
<td>57-0015</td>
</tr>
<tr>
<td>14.</td>
<td>20-4670</td>
</tr>
<tr>
<td>15.</td>
<td>57-4658</td>
</tr>
<tr>
<td>16.</td>
<td>57-4133</td>
</tr>
<tr>
<td>17.</td>
<td>20-4502</td>
</tr>
</tbody>
</table>

* A-axis slave assembly only ** A-axis drive assembly only *** B-axis assembly only
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Tilt</th>
<th>Rotary</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.</td>
<td>57-0139 (A-Axis)</td>
<td>*43. 57-4115</td>
<td></td>
</tr>
<tr>
<td></td>
<td>57-2221 (B-Axis)</td>
<td>*44. 20-4668</td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>57-4654</td>
<td>**45. 57-2234</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>20-4502</td>
<td>**46. 20-3186</td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>54-4654</td>
<td>**47. 56-2085</td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>20-4507</td>
<td>**48. 51-0026</td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>57-4135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*41.</td>
<td>20-4108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*42.</td>
<td>57-2220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**43.</td>
<td>57-4115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**44.</td>
<td>20-4108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**45.</td>
<td>57-2234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**46.</td>
<td>20-3186</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**47.</td>
<td>56-2085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**48.</td>
<td>51-0026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td>Cable 36-4030C</td>
<td>36-4122A</td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td>Motor 62-0014</td>
<td>62-2508</td>
<td></td>
</tr>
</tbody>
</table>

* A-axis slave assembly only
** A-axis drive assembly only
*** B-axis assembly only

TR310

1. 25-4889
2. 57-4644
3. 25-4888
4. 57-4643
5. 59-4602
6. N/A
7. **7. 20-4382**
8. **8. 57-2250**
9. 57-4619
10. 25-4882
11. 57-4425
12. 25-4807
13. 57-4604
14. 20-4604
15. 57-4641
16. 57-4133
17. 20-4505
18. 54-4510
19. 20-4515
20. 57-4624
21. 25-4886
22. 57-4641
23. 25-4887
24. 57-4625
25. 25-4884
26. 20-4213

27. 57-2144
28. 57-2252
29. 57-2831
30. 28-4126
31. 20-4214
32. 69-18101
33. 20-4212
34. 57-2121
35. 57-2251 (A-AXIS)
36. 57-0025 (B-AXIS)
37. 57-4384
38. 20-4505
39. 54-0218
40. 20-4519
41. 20-4382
42. 57-2250
43. 57-4120
44. 20-4388
45. 57-0052
46. 20-3217
47. 56-2087
48. 51-0036

49. Cable 36-4030C 36-4030C
Motor 62-0016 62-0014
AC100 Valve Assembly and Slip Ring (AC100)

MATERIALS
1. 90 Comp. Fitting
2. Male Comp. Fitting
3. Valve
4. 1/4 Male Adaptor
5. Quick Release
6. Slip Ring
7. Bracket
8. Washer 1/4 Split
9. SHCS, 1/4-20 x 1/2
10. BHCS, 10-32 x 3/8
11. Washer, #10 Star
12. Hex Nut, 10-32
13. Male Hex JCT.
14. 1/8 NPT Female Tee
15. 1/8-27 Pipe Plug
16. Copper Tube (4026)

Assembly of Valve and Slip Ring (AC 25/125)

1. Valve Mounting Block
2. Slip Ring
3. Air Valve
4. 10-32 BHCS
5. 1/2-13 SHCS
6. 1/4 Male Adapter
7. Quick Release Fitting
8. Male Comp. Fitting
9. Copper Tube
10. Flow Restrictor

* The flow restrictor does not exist on the AC25.